56
Views
20
CrossRef citations to date
0
Altmetric
Articles

Biosorption of Pb(II), Ni(II) and Cr(VI) ions from aqueous solution using Rhizoclonium tortuosum: extended application to nickel plating industrial wastewater

, , , &
Pages 25114-25139 | Received 24 Nov 2015, Accepted 28 Jan 2016, Published online: 12 Feb 2016
 

Abstract

The adsorption of Pb(II), Ni(II), and Cr(VI) ions onto Rhizoclonium tortuosum (RT) was investigated in a batch mode operation. The two parameter (Langmuir and Freundlich) and three parameter models (Redlich–Peterson and Sips isotherm model) were used to depict the adsorption of metal ions onto R. tortuosum. Sips isotherm model was provided the best fit to the adsorption equilibrium data. The adsorption kinetics was described by the pseudo-first-order, pseudo-second-order, and Elovich kinetic models. The pseudo-second-order model provides the best fit. The maximum monolayer adsorption capacity of the RT were found to be 66.08, 85.09, and 61.45 mg/g for Pb(II), Ni(II), and Cr(VI), respectively. The thermodynamic results showed that the adsorption process was endothermic, feasible, and spontaneous in nature. The ability of RT to remove the Ni(II) ions in column studies was explored. The effect of bed height, flow rate, and initial Ni(II) ion concentration were studied. The dynamic behavior of the column performance was studied using the bed depth service time (BDST) and Thomas models. This research was also further extended to treat the nickel contaminated plating industrial wastewater. The results showed that the RT can be utilized as better biosorbent for the removal of metal ions from industrial wastewater.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.