244
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Zero-Inflated Count Data From Clinical Trials With Potential Dropouts

, &
Pages 273-283 | Received 01 Mar 2011, Published online: 30 Aug 2012
 

Abstract

Counts of prespecified events are important endpoints for many safety and efficacy clinical trials. The conventional Poisson model might not be ideal due to three potential issues: (1) overdispersion arising from intra-subject correlation, (2) zero inflation when the prespecified event is rare, and (3) missing observations due to early dropouts. Negative binomial (NB), Poisson hurdle (PH), and negative binomial hurdle (NBH) models are more appropriate for overdispersed and/or zero-inflated count data. An offset can be included in these models to adjust for differential exposure duration due to early dropouts. In this article, we propose new link functions for the hurdle part of a PH/NBH model to facilitate testing for zero-inflation and model selection. The proposed link function particularly improves the model fit of a NBH model when an offset is included to adjust for differential exposure. A simulation study is conducted to compare the existing and proposed models, which are then applied to data from two clinical trials to demonstrate application and interpretation of these methods.

Acknowledgments

We thank the editors and two anonymous referees for their constructive comments and suggestions, which have led to substantial improvement in the revised version of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 71.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.