204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Deep Neural Networks Guided Ensemble Learning for Point Estimation

ORCID Icon, & ORCID Icon
Pages 270-278 | Received 14 Dec 2022, Accepted 14 Sep 2023, Published online: 20 Oct 2023
 

Abstract

In modern statistics, interests shift from pursuing the uniformly minimum variance unbiased estimator to reducing mean squared error (MSE) or residual squared error. Shrinkage-based estimation and regression methods offer better prediction accuracy and improved interpretation. However, the characterization of such optimal statistics in terms of minimizing MSE remains open and challenging in many problems, for example, estimating the treatment effect in adaptive clinical trials with pre-planned modifications to design aspects based on accumulated data. From an alternative perspective, we propose a deep neural network based automatic method to construct an improved estimator from existing ones. Theoretical properties are studied to provide guidance on applicability of our estimator to seek potential improvement. Simulation studies demonstrate that the proposed method has considerable finite-sample efficiency gain compared to several common estimators. In the Adaptive COVID-19 Treatment Trial (ACTT) as a motivating example, our ensemble estimator essentially contributes to a more ethical and efficient adaptive clinical trial with fewer patients enrolled. The proposed framework can be generally applied to various statistical problems, and can serve as a reference measure to guide statistical research.

Supplemental Materials

Supplementary Materials including Appendices, Tables and Figures referenced in this article are available online. The R code and a help file to replicate results in the main article are available at https://github.com/tian-yu-zhan/DNN_Point_Estimation.

Acknowledgments

The authors thank the editorial board and reviewers for their constructive comments.

Disclosure Statement

No potential competing interest was reported by the author(s).

Additional information

Funding

This manuscript was supported by AbbVie Inc. AbbVie participated in the review and approval of the content. Tianyu Zhan is employed by AbbVie Inc., Haoda Fu is employed by Eli Lilly and Company, and Jian Kang is Professor in the Department of Biostatistics at the University of Michigan, Ann Arbor. Kang’s research was partially supported by NIH R01 GM124061 and R01 MH105561. All authors may own AbbVie stock.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 71.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.