261
Views
23
CrossRef citations to date
0
Altmetric
Articles

Effect of seepage forces on circular openings excavated in Hoek–Brown rock mass based on a generalised effective stress principle

&
Pages 584-600 | Received 14 May 2013, Accepted 28 Jan 2014, Published online: 04 Mar 2014
 

Abstract

When an opening is excavated below groundwater table, the groundwater flows into the excavated zone and seepage forces apply to the rock mass surrounding the opening. Such seepage forces significantly affect the elasto-plastic responses of the rock mass based on effective stress law. In this regard, it is recognised that the failure criterion of a rock mass is a function of Terzaghi’s effective stress, while its elastic deformations are a function of Biot’s effective stress. Based on this generalised effective stress law, seepage forces arising from the groundwater flow into a cylindrical opening are estimated quantitatively, in the present study. An elastic–brittle–plastic analysis of deep circular openings in an infinite Hoek–Brown medium with consideration of the seepage forces under steady-state flow and the generalised effective stress law is derived. The proposed solution can be effectively used for the actual design of underwater openings below deep groundwater table. It is shown that, in openings below deep groundwater tables, the effect of seepage and pore pressure, and consequently, the effective stress law on mechanical analysis may be significant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.