158
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Deformation monitoring analysis of an RCC gravity dam considering frost heaving in an alpine region: a case study

& ORCID Icon
Pages 1349-1363 | Received 19 Oct 2018, Accepted 04 Jan 2020, Published online: 24 Jan 2020
 

Abstract

This study investigates the use of a modified statistical model to quantitatively analyze and assess the current operation status of an RCC (Roller Compacted Concrete) gravity dam in an alpine region. Initially, combined with the measured temperature analysis and temperature field simulation results of a typical dam block, it is demonstrated that frost heaving data are essential to monitor dam crest deformation. The frost heaving factor is introduced using an engineering analogy method, and a modified statistical model considering frost heaving based on the Heaviside step function adaptive model is established. The analysis shows that (a) in the low-temperature season, the deformation near the dam crest is affected due to a wide range of negative-temperature zones; (b) the frost heaving component identified using the novel statistical model shows that the dam crest frost heaving deformation presents a variation law of periodic pulsed fluctuation and a ten-day cycle of hysteresis. The safety assessment of concrete dams crest without any insulation measures in alpine regions should thoroughly consider the displacement caused by frost heaving, which is highly relevant to improving the accuracy of dam safety evaluations over long-term service periods.

Acknowledgments

The authors sincerely thank the reviewers for their constructive comments. These comments are valuable and helpful for improving the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by National Natural Science Foundation of China [grant number 51779130].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.