276
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Tree-based nonlinear ensemble technique to predict energy dissipation in stepped spillways

, &
Pages 3547-3565 | Received 25 Jan 2020, Accepted 29 Jul 2020, Published online: 11 Aug 2020
 

Abstract

In this study, under the skimming flow regime, energy dissipation was investigated with data-driven methods. The data set obtained from the laboratory experiments were modelled by different machine learning (ML) methods, including support vector machine (SVM), K-star (K*) algorithm and artificial neural networks (ANN). Afterwards, for the first time in the literature, linear and nonlinear ensemble models were established in order to improve the accuracy of single models in predicting energy dissipation. Simple average (SA-E) and weighted average (WA-E) were performed as linear ensemble models while M5 Model Tree (M5-MTE) and Random Forest (RF-E) were used to establish non-linear ensemble models. The model results were evaluated according to performance metrics, such as Coefficient of Correlation (CC), Percent Bias (PBIAS), Performance Index (PI), Willmott’s index of agreement (WI) and Nash-Sutcliffe efficiency criteria (NSE). The NSE values are calculated as 0.986, 0.909 and 0.985 for SVM, K* and ANN models, respectively. Moreover, for the ensemble models, higher NSE values were obtained for both linear (NSESA-E = 0.9887, NSEWA-E = 0.9916) and tree-based non-linear (NSEM5 MT-E = 0.9963, NSERF-E = 0.9974) models. Overall, it can be stated that tree-based ensemble models make better predictions for energy dissipation calculation in step spilways compared to single ML methods.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.