34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shear capacity of interlocking compressed stabilized earth block masonry panels

&
Received 04 Mar 2024, Accepted 21 Jun 2024, Published online: 02 Jul 2024
 

Abstract

An experimental study was conducted to investigate the shear performance of reinforced and unreinforced interlocking compressed stabilized earth block (ICSEB) masonry wall panels. Forty-eight wall panels were fabricated using Auram 295 blocks and subjected to diagonal-compression. The influence of coir fibres, channel block, type of reinforcement (steel and bamboo) and arrangement (mesh and vertical) on wall shear behavior were studied. Cracking patterns, failure modes, load-deformation response and shear capacity were analyzed and discussed. The feasibility of using conventional masonry analytical equations in estimating the shear load capacity of wall panels was also evaluated. The test results demonstrated that wall panels without bamboo/steel reinforcement failed suddenly in a brittle manner and split into two parts, whilst bamboo/steel reinforced grouted wall panels behaved in a more ductile manner and remained intact after the failure, irrespective of presence of fibres. The incorporation of fibres effectively increased the shear load and deformation ability of wall panels, irrespective of the variables examined. The panels reinforced with steel/bamboo showed a significant improvement in shear load capacity of about 20.33% to 162.94% and in deformation capacity of around 48.47% to 258.29% when compared to the panels without reinforcement. The adopted analytical equations inaccurately predicted the shear capacity of wall panels.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author, Kasinikota. The data are not publicly available due to ethical restrictions of authors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.