733
Views
0
CrossRef citations to date
0
Altmetric
Editorial

A century of scholarship archived in the Verhandlungen, Mitteilungen, and Inland Waters: publications of the International Society of Limnology

ORCID Icon

ABSTRACT

Over the past century, the International Society of Limnology (SIL) has supported 3 noteworthy publications that document the discoveries of our predecessors and contemporaries. There are 30 volumes of the Verhandlungen (Proceedings, 1922–2010), which archive findings presented at SIL Congresses. The 25 volumes of the Mitteilungen (Communications, 1953–1996) include focal papers and collections on specific topics. Inland Waters (2011 and ongoing) is the peer-reviewed, scholarly outlet for original papers within the framework of SIL. We commemorate our 100-year history with an abridged content review of SIL publications and republish 15 articles (spanning 1953–2022) to illustrate the scope of past contributions and current directions of the Society.

This article is part of the following collections:
1922–2022: 100 years of SIL publications

Introduction

The founding of the International Society of Limnology (SIL) has been detailed by Rodhe (Citation1974a, Citation1975) and its early history summarized by Elster (Citation1974). Over the past century, the Society has supported 3 noteworthy publications that document the limnological discoveries of our predecessors and contemporaries. There are 30 volumes of the Verhandlungen (Proceedings, 1922–2010; Jones Citation2010; https://www.tandfonline.com/loi/tinw19), containing 7785 manuscripts, which archive findings presented at SIL Congresses. The 25 volumes of the Mitteilungen (Communications, 1953–1996; https://www.tandfonline.com/loi/tinw18) include 278 contributions, some quite lengthy; it began with dedicated articles on analytical and field techniques, then broadened to include collections on important topics. A Jubilee Symposium (Mitteilungen, Vol. 20) provides a synopsis of the first 50 years of SIL scholarship (Rodhe Citation1974b). Inland Waters (2011 and ongoing, https://www.tandfonline.com/loi/tinw20) is the peer-reviewed, scholarly outlet for original papers within the framework of SIL and currently includes over 500 publications.

This curated collection commemorates our 100-year history with an abridged content review of inland water resources drawn from the global range of SIL publications. In addition, 15 articles spanning 1953–2022 are republished to further illustrate the scope of past contributions and current directions of the Society (these articles are highlighted in bold in the text and reference list).

Content review

Regional limnology and lake types – SIL founders, A. Thienemann (Citation1922) and E. Naumann (Citation1922, Citation1924), had joint interest in regional limnology and characterization of lake types, with both themes continuing throughout the SIL collection (Magnuson and Kratz Citation2000). Examples are lake features in Spain (Margalef Citation1958), Central America and Mexico (Deevey Citation1953, Jones et al. Citation1993, López Citation2000), Brazil (Tundisi et al. Citation1991), Argentina (Oliver Citation1953, Quiros Citation1991, Zagarese et al. Citation2000), India (Gopal Citation1994), Bangladesh (Khondker Citation1994), Sri Lanka (Costa Citation1994), Malaysia (Ho Citation1994), Indonesia (Nontji Citation1994), Thailand (Campbell and Parnrong Citation2000, Jones et al. Citation2000), China (Chang Citation2002), Africa (Hecky and Bugenyi Citation1992, Ntakimazi Citation1992), former Soviet Union (Winberg Citation1972), Australia (Pearson Citation1994), lakes located at high altitude (Pennak Citation1958, Löffler Citation1964, Citation1969, Zutshi Citation1991), Alaska (O’Brien Citation1975, La Perriere and Jones Citation2002), and the sub-Antarctic (Grobbelaar and Smith Citation2009).

Characterization of lake types across a continuum of conditions began with studies of Chironomus by Thienemann (Citation1922) and continued with emphases on littoral fauna (Macan Citation1953), sediment composition (Hansen Citation1961), production and consumption (Elster Citation1958), structure and dynamics (Margalef Citation1964), circulation patterns (Walker and Likens Citation1975), bacteria (Aizaki Citation1985), salinity (Williams Citation1996), and macrophyte communities (Free et al. Citation2005). Lake properties in Italy (Tartari et al. Citation2006) and Denmark are described with consideration of the European Union Water Framework Directive (Søndergaard et al. Citation2020). Individual lakes can show alternate stable states characterized by vegetation and clarity or a turbid, phytoplankton-dominated phase (Jacoby et al. Citation2001).

Primary productivity – Globally, lake primary productivity is regulated by irradiance, temperature, ice cover, mixing depth, and nutrients (Lewis Citation2011). Studies have identified patterns with morphometry (Rawson Citation1953), periodicity of phytoplankton (Lund Citation1964), self-regulation of the light climate (Talling Citation1971), latitude (Kalff Citation1991), and nutrient abatement (Ahlgren Citation1978). Highest rates are measured in light-limited, nonphotoinhibited lakes with elevated nutrients and phytoplankton (Staehr et al. Citation2016). Evaluation of food webs in subarctic lakes during winter suggested mixotrophic (autotrophy and heterotrophy) growth of picoplankton and nanoplankton (Rodhe Citation1953), and recent data show under-ice respiration rates can switch the annual carbon cycle of an oligotrophic lake to heterotrophy (Brentrup et al. Citation2021). Primary productivity has increased steadily in Lake Tahoe (Goldman Citation1993), and decadal changes have occurred in Lake Victoria, particularly in nearshore areas (Mugiddle Citation1993). Quantification of littoral benthic productivity (littoral greening) in lake food webs has expanded the scope of study beyond the traditional pelagic viewpoint (Vander Zanden and Vadeboncoeur Citation2020). The land–water interface is one of the most metabolically active and productive zones within aquatic ecosystems (Wetzel Citation1964, Citation1990) and is a reflection of the watershed (Likens Citation1984).

Phytoplankton – The growth and seasonal succession of phytoplankton in freshwaters are well characterized in SIL manuscripts (Round Citation1971, Reynolds Citation1988, Talling Citation2002), providing a basis for identifying phytoplankton associations across energy and resource gradients (Reynolds Citation1996). The abundance of picocyanobacteria varies in temperate lakes, with small cells dominating the productivity of oligotrophic systems (Pick Citation2000). Nutrient competition influences phytoplankton dynamics (Tilman Citation1978), with morphological features reflecting lake trophic state (Naselli-Flores Citation2014). Community changes have been related to changes in phosphorus availability in individual lakes (Berman et al. Citation1972, Padisák and Istvánovics Citation1997).

Zoobenthos – Studies of lake zoobenthos (Thienemann Citation1922) are an uninterrupted topic in the SIL collection (Jónasson Citation1978), including documentation of declines in abundance with fish predation and eutrophication (Straskraba Citation1965, Jónasson Citation1984) and changes in community structure with acidity (Raddum and Sæther Citation1981). The invasive zebra mussel (Dreissena polymorpha) can restructure food webs by shifting productivity from the pelagic to the benthos, with increases in phytobenthos, macrophytes, and non-zebra mussel zoobenthos (Spear et al. Citation2022).

Zooplankton – The jubilee review by Brudin (Citation1974) documents developments in limnetic zoogeography during the early decades. A noteworthy discovery was that in the absence of fish predation, large zooplankton dominate and influence plankton associations (Hrbácek et al. Citation1961). Grazer–grazed relationships influence planktonic interactions, resulting in periods of clear water and algal blooms (Lampert Citation1978). Species richness of crustacean zooplankton increases with lake size (Dodson Citation1991) and densities increase with eutrophication (Rask et al. Citation2002), whereas the ratio of zooplankton to phytoplankton declines because of a low proportion of edible algae in lakes dominated by Cyanobacteria (Heathcote et al. Citation2016). In reservoirs, community structure can vary between lotic and lacustrine locations (Pinel-Alloul and Méthot Citation1984). Diel vertical migration of zooplankton, determined by light, can be reduced both in amplitude and magnitude by urban light pollution, potentially contributing to increased algal biomass (Moore et al. Citation2000).

Eutrophication and lake management – Phosphorus, once considered a trace element (Frey Citation1990), was linked to eutrophication in Swiss lakes (Thomas Citation1968). Subsequently, whole-lake experiments demonstrated the response of algal biomass to phosphorus, furthering the understanding of eutrophication (Schindler Citation1988). Changes in Lake Washington in response to an increase and subsequent decrease of the nutrient income supported the external phosphorus loading concept (Edmondson Citation1961, Citation1972). The response of the Yahara chain of lakes (Madison, WI, USA) to fluctuations in phosphorus loading over several decades provides further support (Lathrop and Carpenter 2013). Internal phosphorus loading was found to be important in lakes with anoxic hypolimnia (Nürnberg and Peters Citation1984) and can maintain Microcystis blooms during summer (Sakamoto and Okino Citation2000). Additional research showed some lakes require both phosphorus and nitrogen reduction to control eutrophication (Muhid and Burford Citation2012, Smith et al. Citation2016, Lewis et al. Citation2020, Maberly et al. Citation2020). There are examples of successful lake restoration efforts (de Bernardi et al. Citation1996), and removal of common carp from lakes benefits water quality (Huser et al. Citation2022). Biomanipulation, however, has been more successful in explaining food web interactions than accomplishing lasting improvements in lake water quality (Gliwicz Citation2005). A global dataset showed location (longitude/latitude) and nitrogen were stronger predictors of microcystin occurrence than phosphorus (Buley et al. Citation2021), and growing evidence shows the negative impacts of algal toxins on aquatic organisms and humans (Christoffersen and Burns Citation2000, Willen et al. Citation2011). Recent focus has turned to prevention measures (Spears et al. Citation2022) with near-term ecological forecasting proposed (Carey et al. Citation2022).

Running waters – The biological and water quality characteristics of running waters are major topics in the SIL collection (Patrick Citation1950, Macan Citation1961, Citation1974, Illies and Botosaneanu Citation1963, Lake et al. Citation1994, Ward Citation1998), including invertebrate production (Benke Citation1993). Edaphic features of valleys largely determine stream characteristics (Hynes Citation1975) and account for the variability of the broad global range in water quality (Meybeck Citation1996). Invertebrate communities also reflect the geology and organic matter of the valley (Gíslason et al. Citation2000). The role of the terrestrial–aquatic linkage is further characterized by the landscape perspective of the flood pulse concept (Junk Citation2005), with emphasis on the integral role of floodplain forests (Décamps Citation1996) and the riparian zone (Cummins Citation2002). Longitudinally, riverine energetics and biogeochemical cycling are altered by natural and anthropogenic discontinuities (Stanford et al. Citation1988, Wang et al. Citation2018). Cyanotoxin occurrence is increasingly a feature of large rivers (Graham et al. Citation2020). A literature review suggests both nitrogen and phosphorus control should be considered to reverse eutrophication in streams (Dodds and Smith 2016).

Tropical limnology – Stratification patterns of tropical lakes were documented early by Ruttner (Citation1931) where energetic processes are potentially more than double those at higher latitudes because of higher temperatures and other factors (Lewis Citation2010). Studies of tropical inland waters, however, lag behind those of temperate systems (Gessner Citation1964, Tundisi Citation1984, Kilham and Kilham Citation1990, Melack Citation1996). Threats to the conservation of tropical systems, including widespread introductions of exotic species, require multi-scale approaches to achieve reversal (Dudgeon Citation1994, Lowe-McConnell Citation1994), including the benefits of reductionist and holist strategies in aquatic ecology (Rigler Citation1975). Rivers in monsoonal Asia are considered some of the most endangered ecosystems in the world (Dudgeon Citation2002).

Response and role of lakes in climate change – Moss et al. (Citation2011) underscored the synergy and feedback effects between eutrophication and climate warming. Subsequent updates (Dokulil Citation2014, Meerhoff et al. Citation2022) focused on landscape-level changes that include altered hydrology, greater nutrient loading, and fire frequency resulting in cyanobacterial dominance and measurable changes in biotic communities. With hydrological extremes, water level fluctuations will increase eutrophication symptoms, including frequent cyanobacterial blooms (Zohary and Ostrovsky Citation2011). There are measured responses of phytoplankton and lake temperature in Europe and Asia in response to extreme climate events (Weyhenmeyer et al. Citation2002, Kumagai Citation2008, Jung et al. Citation2016, Kwang-Seuk and Joo Citation2016, Woolway et al. Citation2020). Lake ice is a powerful climatic indicator of increasing air temperature, reflecting both large- and small-scale weather phenomena (Livingstone Citation2000, Magnuson et al. Citation2000, Likens Citation2019). Aquatic systems are sources of greenhouse gases that contribute to climate change, with some eutrophic lakes acting as sinks (Adams Citation1996, Kortelainen et al. Citation2000, Balmer and Downing Citation2011). Strong longitudinal and seasonal patterns in carbon dioxide emissions from reservoirs have been related to photosynthesis and decomposition (Li et al. Citation2018). Global change has prompted a network to understand, predict, and communicate lake ecosystem responses (Hanson et al. Citation2016), stimulating the convergence of limnology and oceanography as global change brings human impact to all water resources (Downing Citation2014).

Additional contributions – Notable papers not included elsewhere in this review include the ionic composition of lake waters (Rodhe Citation1948), buoyancy regulation of planktonic algae (Fogg and Walsby Citation1971), studies in paleolimnology (Dmitriev Citation1969, Frey Citation1974, Horie Citation1981), acid precipitation (Wright and Snekvik Citation1978), oxygen content of fresh waters (Mortimer Citation1981), microbiology (Overbeck and Ohle Citation1964, Jannasch Citation1969, Overbeck Citation1974), and caloric equivalents for calculating ecological energetics (Cummins and Wuycheck Citation1971), along with many others.

References

  • Adams DD. 1996. Aquatic cycling and hydrosphere to trophosphere transport of reduced trace gases – a review. Mitt Internat Verein Limnol. 25:1–13.
  • Ahlgren G. 1978. Response of phytoplankton and primary production to reduced nutrient loading to Lake Norrviken. Verh Internat Verein Limnol. 20:840–845.
  • Aizaki M. 1985. Total number of bacteria as a trophic state index. Verh Internat Verein Limnol. 22:2732–2738.
  • Balmer MB, Downing JA. 2011. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters. 1:125–132.
  • Benke AC. 1993. Concepts and patterns of invertebrate production in running waters. Verh Internat Verein Limnol. 25:15–38.
  • Berman T, Pollingher U, Gophen M. 1972. Lake Kinneret: planktonic populations during seasons of high and low phosphorus availability. Verh Internat Verein Limnol. 18:588–598.
  • Brentrup JA, Richardson DC, Carey CC, Ward NK, Bruesewitz DA, Weathers KC. 2021. Under-ice respiration rates shift the annual carbon cycle in the mixed layer of an oligotrophic lake from autotrophy to heterotrophy. Inland Waters. 11:114–123.
  • Brudin L. 1974. Fifty years’ limnetic zoography. Mitt Internat Verein Limnol. 20:287–300.
  • Buley RP, Correia HE, Abebe A, Issa TB, Wilson AE. 2021. Predicting microcystin occurrence in freshwater lakes and reservoirs: assessing environmental variables. Inland Waters. 11:430–444.
  • Campbell IC, Parnrong S. 2000. Limnology in Thailand: present status and future needs. Verh Internat Verein Limnol. 27:2135–2141.
  • Carey CC, Whitney WM, Loton ME, Figueiredo RJ, Bookout BJ, Corrigan RS, Daneshmand V, Hounshell AG, Howard DW, Lewis AS, et al. 2022. Advancing lake and reservoir water quality management with near-term iterative ecological forecasting. Inland Waters. 12:107–120.
  • Chang WYB. 2002. Chinese great lakes: their changes and impacts. Verh Internat Verein Limnol. 28:307–310.
  • Christoffersen K, Burns CW. 2000. Toxic cyanobacteria in New Zealand lakes and toxicity to indigenous zooplankton. Verh Internat Verein Limnol. 27:3222–3225.
  • Costa HH. 1994. The status of limnology in Sri Lanka. Verh Internat Verein Limnol. 24:73–85.
  • Cummins KW. 2002. Riparian–stream linkage paradigm. Verh Internat Verein Limnol. 28:49–58.
  • Cummins KW, Wuycheck JC. 1971. Caloric equivalents for investigations in ecological energetics. Mitt Internat Verein Limnol. 18:1–158.
  • de Bernardi R, Calderoni A, Mosello R. 1996. Environmental problems in Italian lakes Maggiore and Orta as successful examples of correct management loading to restoration. Verh Internat Verein Limnol. 26:123–138.
  • Décamps H. 1996. The renewal of floodplain forests along rivers: a landscape perspective. Verh Internat Verein Limnol. 26:35–59.
  • Deevey ES Jr. 1953. Studies in the tropics and Southern Hemisphere: limnological studies in Guatemala and El Salvador. Verh Internat Verein Limnol. 12:278–283.
  • Dmitriev GA. 1969. Main features of Lake Baikal history from a paleolimnological basis. Mitt Internat Verein Limnol. 17:430–435.
  • Dodds WK, Smith VH. 2016. Nitrogen, phosphorus and eutrophication in streams. Inland Waters. 6:155–164.
  • Dodson S. 1991. Species richness of crustacean zooplankton in European lakes of different sizes. Verh Internat Verein Limnol. 24:1223–1229.
  • Dokulil M. 2014. Impact of climate warming on European inland waters. Inland Waters. 4:27–40.
  • Downing JA. 2014. Limnology and oceanography: two estranged twins reuniting by global change. Inland Waters. 4:215–232.
  • Dudgeon D. 1994. The need for multi-scale approaches to the conservation and management of tropical inland waters. Mitt Internat Verein Limnol. 24:11–16.
  • Dudgeon D. 2002. The most endangered ecosystems in the world? Conservation of riverine biodiversity in Asia. Verh Internat Verein Limnol. 28:59–68.
  • Edmondson WT. 1961. Changes in Lake Washington following an increase in the nutrient income. Verh Internat Verein Limnol. 14:167–175.
  • Edmondson WT. 1972. The present condition of Lake Washington. Verh Internat Verein Limnol. 18:284–291.
  • Elster H-J. 1958. Das limnologische seetypensystem rückblick und ausblick. [Lake classification, production and consumption]. Verh Internat Verein Limnol. 13:101–120.
  • Elster H-J. 1974. History of limnology. Mitt Internat Verein Limnol. 20:7–30.
  • Fogg GE, Walsby AE. 1971. Buoyancy regulation and the growth of planktonic blue-green algae. Mitt Internat Verein Limnol. 19:182–188.
  • Free G, Bowman J, Caroni R, Donnelly K, Little R, McGarrigle ML, Tierney D, Kennedy N, Allott N, Irvine K. 2005. The identification of lake types using macrophyte community composition in Ireland. Verh Internat Verein Limnol. 29:296–299.
  • Frey DG. 1974. Paleolimnology. Mitt Internat Verein Limnol. 20:95–123.
  • Frey DG. 1990. What is a lake? Verh Internat Verein Limnol. 24:1–5.
  • Gessner F. 1964. The limnology of tropical rivers. Verh Internat Verein Limnol. 15:1090–1091.
  • Gíslason GM, Adalsteinsson H, Ólafsson JS, Hansen I. 2000. Invertebrate communities of glacial and alpine rivers in the central highlands of Iceland. Verh Internat Verein Limnol. 27:1602–1606.
  • Gliwicz ZM. 2005. Food web interactions: Why are they reluctant to be manipulated? Verh Internat Verein Limnol. 29:73–88.
  • Goldman CR. 1993. The conservation of two large lakes: Tahoe and Baikal. Verh Internat Verein Limnol. 25:388–391.
  • Gopal B. 1994. Conservation of inland waters in India: an overview. Verh Internat Verein Limnol. 25:2494–2497.
  • Graham JL, Dubrovsky NH, Foster GM, King LR, Loftin KA, Rosen BH, Stelzer EA. 2020. Cyanotoxin occurrence in large rivers of the United States. Inland Waters. 10:109–117.
  • Grobbelaar JV, Smith VR. 2009. Chemical and biological properties of glacial lakes on sub-Antarctic Marion Island: comparing data spanning 35 years. Verh Internat Verein Limnol. 30:1124–1126.
  • Hansen K. 1961. Lake types and lake sediments. Verh Internat Verein Limnol. 14:285–290.
  • Hanson PC, Weathers KC, Kratz TK. 2016. Networked lake science: how the Global Lake Ecological Observatory Network (GLEON) works to understand, predict, and communicate lake ecosystem response to global change. Inland Waters. 6:543–554.
  • Heathcote AJ, Fistrup CT, Kendall D, Downing JA. 2016. Biomass pyramids in lake plankton: influence of Cyanobacteria size and abundance. Inland Waters. 6:250–257.
  • Hecky RE, Bugenyi WB. 1992. Hydrology and chemistry of the African Great Lakes and water quality issues: problems and solutions. Mitt Internat Verein Limnol. 23:45–54.
  • Ho S-C. 1994. Status of limnological research and training in Malaysia. Mitt Internat Verein Limnol. 24:129–145.
  • Horie S. 1981. On the significance of paleolimnological studies of ancient lakes – Lake Biwa and other relict lakes. Verh Internat Verein Limnol. 21:13–44.
  • Hrbácek J, Dvorakova M, Korínek V, Procházkóva L. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of the metabolism of the whole plankton association. Verh Internat Verein Limnol. 14:192–195.
  • Huser BJ, Bajer PG, Kittelson S, Christenson S, Menken K. 2022. Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio). Inland Waters. 12:33–46.
  • Hynes HBN. 1975. The stream and its valley. Verh Internat Verein Limnol. 19:1–15.
  • Illies J, Botosaneanu L. 1963. Probléms et methods de la classification et de zonation écologique des eaux courantes, considerées surtant du point de vue faunistique. [Problems and methods of the classification and ecological zoning of running waters, considered especially from the faunistic point of view]. Mitt Internat Verein Limnol. 12:1–57.
  • Jacoby JM, Welch EB, Wertz I. 2001. Alternate stable states in a shallow lake dominated by Egeria densa. Verh Internat Verein Limnol. 27:3805–3810.
  • Jannasch HW. 1969. Current concepts in aquatic microbiology. Verh Internat Verein Limnol. 17:25–39.
  • Jónasson PM. 1978. Zoobenthos of lakes. Verh Internat Verein Limnol. 20:13–37.
  • Jónasson PM. 1984. Decline of zoobenthos through five decades of eutrophication in Lake Esrom. Verh Internat Verein Limnol. 22:800–804.
  • Jones JR. 2010. Verhandlungen epilog. Verh Internat Verein Limnol. 30:1671.
  • Jones JR, Lohman K, Umaña VG. 1993. Water chemistry and trophic state of eight lakes in Costa Rica. Verh Internat Verein Limnol. 25:899–905.
  • Jones JR, Perkins BD, Witt A Jr, Kaiser MS, Thamasara S, Siriworakul M, Benyasut P. 2000. Limnological characteristics of some reservoirs in Thailand. Verh Internat Verein Limnol. 27:2158–2166.
  • Jung S, Shin M, Kim J, Eum J, Lee Y, Lee J, Choi Y, You K, Owen J, Kim B. 2016. The effects of Asian summer monsoons on algal blooms in reservoirs. Inland Waters. 6:406–413.
  • Junk WJ. 2005. Flood pulsing and the linkages between terrestrial, aquatic and wetland systems. Verh Internat Verein Limnol. 29:11–39.
  • Kalff J. 1991. The utility of latitude and other environmental factors as predictors of nutrients, biomass and production in lakes worldwide: problems and alternatives. Verh Internat Verein Limnol. 24:1235–1239.
  • Khondker M. 1994. The status of limnological research in Bangladesh. Mitt Internat Verein Limnol. 24:147–154.
  • Kilham SS, Kilham P. 1990. Tropical limnology: Do African lakes violate the “first law” of limnology? Verh Internat Verein Limnol. 24:68–72.
  • Kortelainen P, Huttunen T, Välsänen T, Mattsson T, Karjalainen P, Martikainen PJ. 2000. CH4, CO2, and N2O supersaturation in 12 Finnish lakes before and after ice-melt. Verh Internat Verein Limnol. 27:1410–1414.
  • Kumagai M. 2008. Lake Biwa in the context of world lake problems. Verh Internat Verein Limnol. 30:1–15.
  • Kwang-Seuk J, Joo G-J. 2016. Effects of Indian Ocean dipole signal on freshwater cyanobacterial dynamics. Inland Waters. 6:414–422.
  • La Perriere JD, Jones JR. 2002. Limnology of lakes in Katmai National Park and Preserve, Alaska: nutrients and plankton. Verh Internat Verein Limnol. 28:1010–1016.
  • Lake PS, Schreiber ESG, Milne BJ, Pearson RG. 1994. Species richness in streams: patterns over time, with stream size and latitude. Verh Internat Verein Limnol. 25:1822–1826.
  • Lampert W. 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh Internat Verein Limnol. 20:969–974.
  • Lathrop RC, Carpenter SR. 2013. Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara chain of lakes. Inland Waters. 4:1–14.
  • Lewis A, Kim BS, Edwards HL, Wander HL, Garfield CM, Murphy HE, Poulin ND, Prinicotta SD, Rose KC, Taylor AE, et al. 2020. Prevalence of phytoplankton limitation by both nitrogen and phosphorus related to nutrient stoichiometry, land use, and primary producer biomass across northeastern United States. Inland Waters. 10:42–50.
  • Lewis WM Jr. 2010. Biogeochemistry of tropical lakes. Verh Internat Verein Limnol. 30:1595–1603.
  • Lewis WM Jr. 2011. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters. 1:1–28.
  • Li S, Wang F, Zhou T, Cheng T, Wang B. 2018. Carbon dioxide emissions from cascade hydropower reservoirs along the Wujiang River, China. Inland Waters. 8:157–166.
  • Likens GE. 1984. Beyond the shoreline: a watershed ecosystem approach. Verh Internat Verein Limnol. 22:1–22.
  • Likens GE. 2019. Unusual sequence of ice cover formation on Mirror Lake, New Hampshire, USA. Inland Waters. 9:408–410.
  • Livingstone D. 2000. Large-scale climatic forcing detected in historical observations of lake ice break-up. Verh Internat Verein Limnol. 27:2775–2783.
  • Löffler H. 1964. The limnology of tropical high mountain lakes. Verh Internat Verein Limnol. 15:176–193.
  • Löffler H. 1969. High altitude lakes in the Mt. Everest region. Verh Internat Verein Limnol. 17:373–385.
  • López E. 2000. Regional limnology of ten reservoirs in the Lerma Basin, Mexico. Verh Internat Verein Limnol. 27:2288–2293.
  • Lowe-McConnell R. 1994. Threats to, and conservation of, tropical freshwater fishes. Mitt Internat Verein Limnol. 24:47–52.
  • Lund JWG. 1964. Primary production and periodicity of the phytoplankton [Edgardo Baldi Memorial Lecture]. Verh Internat Verein Limnol. 15:37–56.
  • Maberly SC, Pitt J-A, Davies PS, Carvalho L. 2020. Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters. 10:159–172.
  • Macan TT. 1953. Littoral fauna and lake types. Verh Internat Verein Limnol. 12:608–612.
  • Macan TT. 1961. A review of running water studies. Verh Internat Verein Limnol. 14:587–602.
  • Macan TT. 1974. Running water. Mitt Internat Verein Limnol. 20:301–321.
  • Magnuson JJ, Kratz TK. 2000. Lakes in the landscape: approaches to regional limnology. Verh Internat Verein Limnol. 27:74–87.
  • Magnuson JJ, Wynne RH, Benson BJ, Robertson DM. 2000. Lake and river ice as a powerful indicator of past and present conditions. Verh Internat Verein Limnol. 27:2749–2756.
  • Margalef R. 1958. “Trophic” typology versus biotic typology as exemplified in the regional limnology of Northern Spain. Verh Internat Verein Limnol. 13:339–349.
  • Margalef R. 1964. Correspondence between the classic types of lakes and the structural and dynamic properties of their populations. Verh Internat Verein Limnol. 15:169–175.
  • Meerhoff M, Audet J, Davidson TA, De Meester L, Hilt S, Kosten S, Liu Z, Mazzeo N, Paerl H, Scheffer M, Jeppesen E. 2022. Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters. 12:187–204.
  • Melack JM. 1996. Recent developments in tropical limnology. Verh Internat Verein Limnol. 26:211–217.
  • Meybeck M. 1996. River water quality global ranges, time and space variabilities, proposal for some redefinitions. Verh Internat Verein Limnol. 26:81–96.
  • Moore MV, Pierce SM, Walsh HM, Kavlvik SK, Lim JD. 2000. Urban light pollution alters the diel vertical migration of Daphnia. Verh Internat Verein Limnol. 27:779–782.
  • Mortimer CH. 1981. The oxygen content of air-saturated fresh waters over ranges of temperature and atmospheric pressure of limnological interest. Mitt Internat Verein Limnol. 22:1–23.
  • Moss B, Kosten S, Meerhoff M, Batterbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, De Meester L, et al. 2011. Allied attack: climate and eutrophication. Inland Waters. 1:101–105.
  • Mugiddle R. 1993. The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Verh Internat Verein Limnol. 25:846–849.
  • Muhid P, Burford MA. 2012. Assessing nutrient limitation in a subtropical reservoir. Inland Waters. 2:185–192.
  • Naselli-Flores L. 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: the case of Lake Arancio, Sicily, Italy. Inland Waters. 4:15–26.
  • Naumann E. 1922. Einige Grundzüge in der regionalen limnology süd – und Mittelschwedens. [Some basic features in the regional limnology of southern and central Sweden]. Verh Internat Verein Limnol. 1:75–85.
  • Naumann E. 1924. Einige allgemeine Gesichtspunkte betreffs des studiums der regionalen limnologie. [Some general points of view of regional limnology]. Verh Internat Verein Limnol. 2:100–110.
  • Nontji A. 1994. The status of limnology in Indonesia. Mitt Internat Verein Limnol. 24:95–113.
  • Ntakimazi G. 1992. Conservation of the resources of the African Great Lakes. Why? An overview. Mitt Internat Verein Limnol. 23:5–9.
  • Nürnberg G, Peters RH. 1984. The importance of internal phosphorus load to the eutrophication of lakes with anoxic hypolimnia. Verh Internat Verein Limnol. 22:190–194.
  • O’Brien WJ. 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verh Internat Verein Limnol. 19:472–479.
  • Oliver SR. 1953. A few aspects of the regional limnology of the province of Buenos Aires. Verh Internat Verein Limnol. 12:296–301.
  • Overbeck J. 1974. Microbiology and biochemistry. Mitt Internat Verein Limnol. 20:198–228.
  • Overbeck J, Ohle W. 1964. Contributions to the biology of methane oxidizing bacteria. Verh Internat Verein Limnol. 15:535–543.
  • Padisák J, Istvánovics V. 1997. Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Verh Internat Verein Limnol. 26:574–580.
  • Patrick R. 1950. A proposed measure of stream conditions. Verh Internat Verein Limnol. 11:299–307.
  • Pearson RG. 1994. Limnology in the northeastern tropics of Australia, the wettest part of the driest continent. Mitt Internat Verein Limnol. 24:155–163.
  • Pennak RW. 1958. Regional lake typology in northern Colorado. U.S.A. Verh Internat Verein Limnol. 13:264–283.
  • Pick FR. 2000. Predicting the abundance and production of photosynthetic picoplankton in temperate lakes. Verh Internat Verein Limnol. 27:1884–1889.
  • Pinel-Alloul B, Méthot G. 1984. Analyse multimensionelle de l’evolution du zooplankton Durant la mise en eu de trois reservoirs du Nord de Québec, Canada. [Multidimentional analysis of the evolution of zooplankton during the impoundment of three reservoirs in northern Quebec, Canada]. Verh Internat Verein Limnol. 22:1444–1455.
  • Quiros R. 1991. Empirical relationships between nutrients, phyto- and zooplankton and relative fish biomass in lakes and reservoirs of Argentina. Verh Internat Verein Limnol. 24:1198–1206.
  • Raddum GG, Sæther OA. 1981. Chironomid communities in Norwegian lakes with different degrees of acidification. Verh Internat Verein Limnol. 21:399–405.
  • Rask M, Olin M, Horppila J, Lehtovaara A, Väisänen A, Ruuhijärvi J, Sammalkorpi I. 2002. Zooplankton and fish communities in Finnish lakes of different trophic status: responses to eutrophication. Verh Internat Verein Limnol. 28:396–401.
  • Rawson DS. 1953. Morphometry as a dominant factor in the productivity of large lakes. Verh Internat Verein Limnol. 12:164–175.
  • Reynolds CS. 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh Internat Verein Limnol. 23:683–691.
  • Reynolds CS. 1996. The plant life of the pelagic. Verh Internat Verein Limnol. 26:97–113.
  • Rigler FH. 1975. Nutrient kinetics and the new typology. Verh Internat Verein Limnol. 19:197–210.
  • Rodhe W. 1948. The ionic composition of lake waters. Verh Internat Verein Limnol. 10:377–386.
  • Rodhe W. 1953. Productivity: Can plankton production proceed during winter darkness in subarctic lakes? Verh Internat Verein Limnol. 12:117–122.
  • Rodhe W. 1974a. The International Association of Limnology: creation and functions. Mitt Internat Verein Limnol. 20:44–70.
  • Rodhe W. 1974b. Jubilee Symposium: 50 years of limnological research. Mitt Internat Verein Limnol. 20:1–5.
  • Rodhe W. 1975. The SIL founders and our fundament. Verh Internat Verein Limnol. 19:16–25.
  • Round FE. 1971. The growth and succession of algal populations in freshwaters. Mitt Internat Verein Limnol. 19:70–99.
  • Ruttner F. 1931. Die schichtung in troplischen seen. [The stratification in tropical lakes]. Verh Internat Verein Limnol. 5:44–67.
  • Sakamoto M, Okino T. 2000. Self-regulation of cyanobacterial blooms in a eutrophic lake. Verh Internat Verein Limnol. 27:1243–1249.
  • Schindler DW. 1988. Experimental studies of chemical stressors on whole lake ecosystems. Verh Internat Verein Limnol. 23:11–41.
  • Smith VH, Wood SA, McBride CG, Atalah J, Hamilton DP, Abell J. 2016. Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters. 6:273–283.
  • Søndergaard M, Johansson LS, Levi EE, Lauridsen TL, Jeppesen E. 2020. Lake types and their definition: a case study from Denmark. Inland Waters. 10:227–240.
  • Spear MJ, Wakker PA, Shannon TP, Lowe RL, Burlakova LE, Karatayev Y, Vander Zanden J. 2022. Early changes in the benthic community of a eutrophic lake following zebra mussel (Dreissena polymorpha) invasion. Inland Waters. 12:311–329.
  • Spears BM, Hamilton DP, Pan Y, Zhaosheng C, May L. 2022. Lake management: Is prevention better than cure? Inland Waters. 12:173–186.
  • Staehr P, Brighente LS, Honte M, Christensen J, Rose KC. 2016. Global patterns of light saturation and photoinhibition of lake primary production. Inland Waters. 6:593–607.
  • Stanford JA, Hauer FR, Ward JV. 1988. Serial discontinuity in a large river system. Verh Internat Verein Limnol. 23:1114–1118.
  • Straskraba M. 1965. The effect of fish on the number of invertebrates in ponds and streams. Mitt Internat Verein Limnol. 13:106–127.
  • Talling JF. 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt Internat Verein Limnol. 19:214–243.
  • Talling JF. 2002. Freshwater phytoplankton – accessible, microbial, influential population dynamics. Verh Internat Verein Limnol. 28:7–28.
  • Tartari G, Buraschi E, Copetti D, Salerno F, Monguzzi C, Pagnotta R, Marchetto A. 2006. Characterization of Italian lake types. Verh Internat Verein Limnol. 29:1811–1816.
  • Thienemann A. 1922. Chironomusarten der tiefenfauna der norddeutschen Seen. Ein hydrobiologisches problem. [The two Chironomus species of the deep fauna of the northern German lakes: a hydrobiological problem]. Verh Internat Verein Limnol. 1:108–143.
  • Thomas EA. 1968. Die phosphattophierung des Zürichsees und anderer Schweizer. [The phosphate trophication of Lake Zurich and other Swiss lakes]. Mitt Internat Verein Limnol. 14:231–242.
  • Tilman D. 1978. The role of nutrient competition in a predictive theory of phytoplankton population dynamics. Mitt Internat Verein Limnol. 21:585–592.
  • Tundisi JG. 1984. Tropical limnology. Verh Internat Verein Limnol. 22:60–64.
  • Tundisi JG, Matsumura Tundisi T, Calijuri MC, Novo EML. 1991. Comparative limnology of five reservoirs in the middle Tietê River. S. Paulo State. Verh Internat Verein Limnol. 24:1489–1496.
  • Vander Zanden MJ, Vadeboncoeur Y. 2020. Putting the lake back together 20 years later: What in the benthos we have learned about linkages in lakes. Inland Waters 10:305–321.
  • Walker KF, Likens GE. 1975. Meromixis and a reconsidered typology of lake circulation patterns. Verh Internat Verein Limnol. 19:442–458.
  • Wang F, Maberly SC, Wang B, Liang X. 2018. Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters. 8:130–140.
  • Ward JV. 1998. A running water perspective of ecotones, boundaries and connectivity. Verh Internat Verein Limnol. 26:1165–1168.
  • Wetzel RG. 1964. Primary productivity of aquatic macrophytes. Verh Internat Verein Limnol. 15:426–436.
  • Wetzel RG. 1990. Land–water interfaces: metabolic and limnological regulators. Verh Internat Verein Limnol. 24:6–24.
  • Weyhenmeyer GA, Adrian R, Gaedke U, Livingstone DM, Maberly SC. 2002. Responses of phytoplankton in European lakes to change in the North Atlantic Oscillation. Verh Internat Verein Limnol. 28:1436–1439.
  • Willen E, Ahlgren G, Tilahun G, Spoof L, Nefling M-R, Meriluoto J. 2011. Cyanotoxin production in seven Ethopian Rift Valley lakes. Inland Waters. 1:81–91.
  • Williams WD. 1996. The largest, highest and lowest lakes in the world: saline lakes. Verh Internat Verein Limnol. 26:61–79.
  • Winberg GG. 1972. Etudes sur le bilan biologique énergetique et la productivité des lacs en Union Soviétique. [Studies on the biological energy balance of lakes in the Soviet Union]. Edgardo Baldi memorial lecture. Verh Internat Verein Limnol. 18:39–64.
  • Woolway RI, Jennings E, Carrea L. 2020. Impact of the European heatwave on lake surface temperature. Inland Waters. 10:322–332.
  • Wright RF, Snekvik E. 1978. Acid precipitation: chemistry and fish populations in 700 lakes in southwest Norway. Verh Internat Verein Limnol. 20:765–775.
  • Zagarese HE, Diaz M, Pedrozo F, Úbeda C. 2000. Mountain lakes in northwestern Patagonia. Verh Internat Verein Limnol. 27:533–538.
  • Zohary T, Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1:47–59.
  • Zutshi DP. 1991. Limnology of high altitude lakes of Himalayan region. Verh Internat Verein Limnol. 24:1077–1080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.