1,374
Views
40
CrossRef citations to date
0
Altmetric
Articles

Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting

, &
Pages 432-441 | Received 24 Jan 2014, Accepted 04 Apr 2014, Published online: 06 May 2014
 

Abstract

Research on aboveground biomass (AGB) retrieval via remote sensing in floodplain forests, in particular, is urgently needed for improved understanding of carbon cycling in such areas. AGB estimation is particularly challenging in floodplain forests, which are characterized by high spatial variability in AGB resulting from biogeomorphodynamic processes. In this study, we perform remote AGB retrieval for a deciduous riparian forest on a river meander bend based on hyperspectral/high-dimensional Hyperion bands and other input variables. We compare multivariate adaptive regression splines (MARS)-, stochastic gradient boosting (SGB)- and Cubist-based AGB estimates. Results show that MARS- and SGB-derived estimates are significantly more accurate than Cubist-based AGB. The most accurate MARS and SGB estimates have a coefficient of determination, R2, of 0.97 and 0.95, respectively, whereas the Cubist estimate with the lowest error has an R2 of 0.85. MARS and SGB AGB are not significantly different, however. These modelling approaches are applicable across scales and environments.

Acknowledgement

The authors thank the anonymous reviewers for their useful comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 83.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.