151
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Estimation of volumetric surface soil moisture content using microwave-calibrated soil evaporative efficiency information

, , , &
Pages 923-932 | Received 12 Feb 2020, Accepted 26 Jun 2020, Published online: 29 Jul 2020
 

ABSTRACT

Soil moisture (SM) is a critical variable in energy and water partitioning at the interface between the land surface and atmosphere. In this study, we provided a robust method to retrieve soil moisture using optimal remotely sensed soil evaporative efficiency (SEE) information. Specifically, SEE was deduced from the triangle space constituted by remotely sensed land surface temperature (LST) and fractional vegetation cover (Fc). Theoretical solutions of the dry and wet boundaries were derived by annual-scale optimization and microwave SM calibration. The two limits of SM were obtained by linear fit function between SEE and microwave-based SM. The proposed method was validated at the Liaoning Province of China in the year 2011 by using MODerate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture and Ocean Salinity (SMOS) satellite images as input. Results indicated that the new method has not only bypassed the complex parametric scheme in the calculation of boundaries within the LST-Fc feature space but also performed superior in the estimation of soil moisture status at all-sky days. Besides, the optimal method has reproduced the spatial and temporal patterns of soil moisture reasonably well, with a root mean square error of 0.07 m3 m−3. Therefore, the proposed method can be regarded as a suitable tool to provide accurate and continuous monitoring of soil moisture.

Acknowledgments

We also thanks to the support of in situ soil moisture observations from Liaoning Meteorological Bureau.

Additional information

Funding

This research was funded by the Graduate science and technology innovation project of University of Science and Technology Liaoning [LKDYC201822].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 83.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.