366
Views
13
CrossRef citations to date
0
Altmetric
Articles

Performance Evolutions of Tailing-Slag-Based Geopolymer Under Severe Conditions

, &
Pages 101-115 | Received 27 Jan 2015, Accepted 12 Mar 2015, Published online: 08 Apr 2015
 

Abstract

Geopolymer, synthesized from ore-dressing tailing of bauxite (hereinafter referred to as tailing) and ground-granulated blast furnace slag (hereinafter referred to as slag), is exposed to severe conditions such as the low temperature during molding, setting, and hardening and the elevated temperature after hardening. The effect of low-temperature curing and high-temperature heating on strength, hydration products, and microstructure is investigated. The results show that the low-temperature curing hinders geopolymerization, and thus, lower early-age strength than that of ambient temperature curing samples is observed. However, this delayed effect does not prevent long-term strength from gradually increasing. The 90-day compressive strength can reach up to 60 MPa, and that is comparable value to 28-day strength of ambient temperature curing samples. The observation of retarded geopolymerization reaction and microstructure formation in TG-DSC and ESEM analysis is an essential reason for delayed strength development in low temperature. More large pores (>10 μm) observed in pore structure analysis also result in the lower strength. After firing at elevated temperature up to 1000 °C, strength of the hardened low-temperature curing geopolymer mortars severely decrease by more than 40 MPa. The reasons for this deteriorationare the chemical processes involving gels decomposition and crystalline-phase formation and physical processes such as cracking. After heating at 1200 °C, an increased strength is obtained, which is a result of sintering and densification.

Acknowledgments

The financial help of the National Natural Science Foundation of China (Project No. 51102222) and National High Technology Research and Development Program (“863” Program) of China (Project No. 2012AA06A109) are gratefully acknowledged. The help of collecting XRD data of raw materials and geopolymer from Ren Xuehong is also acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The financial help of the National Natural Science Foundation of China [Project No. 51102222]; National High Technology Research and Development Program (“863” Program) of China [Project No. 2012AA06A109].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 108.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.