870
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites

ORCID Icon & ORCID Icon
Pages 122-140 | Received 07 Jun 2017, Accepted 01 Nov 2017, Published online: 05 Dec 2017
 

Abstract

Alkali activation of fly ash and ground-granulated blast-furnace slag (GGBS) is a sustainable technology that promotes recycling of industrial by-products in the form of geopolymer composites. In this study, geopolymers are prepared with fly ash, GGBS, and desert dune sand (fines). The alkaline activator solution is formulated using sodium silicate and 14 M sodium hydroxide solutions. The effect of mixture proportioning and curing conditions on the workability, setting time, and compressive strength of geopolymers was examined. The investigated process parameters included percentage of fly ash replacement by GGBS, superplasticizer dosage, amount of fines, alkaline activator solution content, and sodium silicate to sodium hydroxide ratio. The final geopolymeric product could be enhanced by employing subsequent continuous and intermittent water curing techniques. Based on the experimental results, analytical models correlating mixture proportions with workability and 28-day compressive strength were developed for geopolymers made with 100% GGBS and equal proportions of fly ash and GGBS.

Acknowledgments

The authors gratefully acknowledge the support of Ashtech International and Emirates Cement factory for supplying the materials. The authors also acknowledge the help of the concrete laboratory staff at UAE University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 108.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.