153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Research on water evaporation efficiency of porous cement-based photothermal conversion materials

, , , , &
Pages 1073-1080 | Published online: 08 Dec 2022
 

Abstract

Rational storage and efficient utilization of rainwater resources are effective means to solve the problems of urban waterlogging and clean water shortage. Many new photothermal conversion devices have been developed for seawater desalination, but the photothermal conversion function has rarely been applied to building materials for water purification. In this study, porous cement-based photothermal conversion materials (PCPCM) were prepared by coating a layer of photothermal conversion materials on the surface of porous cement products, and their photothermal conversion efficiency and water evaporation efficiency were investigated. The results show that PCPCM with graphene as photothermal conversion layer has the highest photothermal conversion efficiency and water evaporation rate of 76.08% and 1.162 kg m−2 h−1, respectively, under one sunlight intensity (1.0 KW m−2). This work presents a key step towards efficient, low-cost and sustainable purification of rainwater into clean water with renewable solar energy, providing new ideas for functional sponge city design.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 108.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.