319
Views
18
CrossRef citations to date
0
Altmetric
Original Research Paper

Lagrangian two-phase flow modeling of scour in front of vertical breakwater

, ORCID Icon &
Pages 252-266 | Received 13 Jul 2018, Accepted 18 Mar 2020, Published online: 24 Apr 2020
 

ABSTRACT

A Lagrangian particle-based two-phase flow model is developed to simulate the scouring process induced by standing wave in front of the trunk section of a vertical breakwater. Given the two-dimensional nature of the scouring problem at the trunk of vertical wall, the fluid phase is simulated with two-dimensional Navier–Stokes equations based on weakly compressible smoothed particle hydrodynamics (WCSPH) formulation in conjunction with sub-particle scale (SPS) turbulence closure model. The sediment phase is simulated using the Discrete Element Method (DEM). The effects of interparticle and particle-wall collisions are computed by activating a spring-dashpot system. The WCSPH fluid-phase and DEM sediment-phase are coupled through a weakly one-way coupling procedure using wave orbital velocity. The numerical model is successfully validated against experimental data. The maximum scour depth predicted by WCSPH-DEM model is closely approximate the experimental data. This study, for the first time, demonstrated an extra recirculating sediment transport mechanism in front of the vertical breakwater, similar to steady streaming recirculating cells in the fluid phase, which has a direct impact on the formation of scour hole and maximum scour depth at the breakwater trunk. The scenario modeling conducted in this study show that by increasing the steady streaming velocity, the deposition rate and the depth of scour hole were increased.

Acknowledgments

The authors would like to thank Dr. Fatemeh Hajvalie for her constructive comments on the development of numerical model.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 375.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.