793
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Learning to schedule (L2S): adaptive job shop scheduling using double deep Q network

ORCID Icon &
Pages 409-423 | Received 10 Jan 2023, Accepted 25 Feb 2023, Published online: 09 Mar 2023
 

ABSTRACT

The stochasticity and randomly changing nature of the production environment posed a significant challenge in developing real-time responsive scheduling solutions. Many previous scheduling solutions assumed static environments, user-anticipated, and hand-crafted dynamic scenarios. However, real-world production environment events are random and unpredictable. This study considers Job Shop Scheduling Problem (JSSP) as an iterative decision-making problem, and Deep Reinforcement Learning (DRL)-based solution is designed to address these challenges. A deep neural network is utilized for function approximation, and the input feature vectors are extracted iteratively to be used in the sequential decision-making process. The production states are expressed with randomly changing feature vectors of each job’s operations and the corresponding machines. This work proposes Double Deep Q Network (DDQN) methods to train the model. Results are evaluated on the renowned OR-Library benchmark problems. The evaluation result indicates that the proposed approach is comparative in benchmark problems, and the scheduling agent can get good results in unseen instances with an average of 94.86% of the scheduling score.

Graphical abstract

Acknowledgments

This research was supported through computational resources of HPC-MARWAN (https://hpc.marwan.ma/)provided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 190.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.