191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reliability assessment of freight wagon passing through railway turnouts using adaptive Kriging surrogate model

, , , , , & show all
Received 25 Jun 2023, Accepted 07 Jan 2024, Published online: 20 Jan 2024
 

ABSTRACT

Railway turnout (RT) is a crucial component of railway infrastructure that consists of several components. Assessing the derailment probability of freight wagons passing through the turnout is crucial for quantifying failure risks and optimizing the performance of the freight wagon-turnout system (FWTS). However, existing assessment methods often require extensive model evaluations and impose substantial computational costs. To address this issue, an efficient reliability analysis method is established for assessing the derailment risk at RTs. Firstly, a dynamic model is developed to capture the wheel-rail dynamic interaction and the numerical model is validated by field tests. Secondly, to reduce the computational cost in the reliability analysis, an efficient adaptive Kriging method based on an error stopping criteria and a learning function is adopted to estimate the failure probabilities under multiple failure modes of wheel derailments. Based on the efficient learning function and convergence criterion, accurate failure probability results can be obtained with a small number of multibody and finite element coupled dynamic simulations. Furthermore, the prediction accuracy of the proposed method in capturing random characteristics for FWTS is evaluated. Finally, the influence of the evolution of rail wear on the failure probability is further discussed.

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 52122810 and 52108418), and Natural Science Foundation of Sichuan Province, China (Grant No. 2023NSFSC0398).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was supported by the National Natural Science Foundation of China [52122810 and 52108418].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 306.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.