1,047
Views
2
CrossRef citations to date
0
Altmetric
Research Article

On generalization of an integral inequality and its applications

, & | (Reviewing Editor)
Article: 1066528 | Received 31 Dec 2014, Accepted 19 Jun 2015, Published online: 12 Aug 2015

Abstract

In this paper, we give generalization of an integral inequality. We find its applications in fractional calculus by involving different kinds of fractional integral operators, for example Riemann–Liouville fractional integral, Caputo fractional derivative, Canavati fractional derivative and Widder derivative, Saigo fractional integral operator, etc.

AMS Subject Classifications:

Public Interest Statement

Fractional calculus is as important as calculus and a lot of work has been published in the favor of fractional calculus. Fractional integral inequalities are useful in establishing the uniqueness of solutions of certain partial differential equations, and also provide upper and lower bounds for solutions of fractional boundary value problems. In this paper, an integral inequality is generalized and its applications in fractional calculus are found.

1. Introduction

In the ocean of inequalities, integral inequalities received great attention by many scientists, for example mathematicians, physicists, and statisticians. Here, we want to pay our attention to an integral inequality by Mitrinović and Pečarić (Citation1991).

Theorem 1.1

Let fi:[0,)R,i=1,2,3,4, be non-negative functions and let g be a real function which has the following representation(1.1) g(x)=0k(x,t)dh(t),(1.1)

where k(x,t)0, when x[0,),t[0,), and h is a non-decreasing function. If p, q are two real numbers such that 1p+1q=1,p>1, then(1.2) 0f1(x)f2(x)g(x)dxC0f3(x)g(x)dx1p×0f4(x)g(x)dx1q(1.2)

whereC=supt0k(x,t)f1(x)f2(x)dx0k(x,t)f3(x)dx-1p×0k(x,t)f4(x)dx-1q.

Fractional integral inequalities are useful in establishing the uniqueness of solutions for certain fractional partial differential equations. They also provide upper and lower bounds for the solutions of fractional boundary value problems. These considerations have led various researchers in the field of integral inequalities to explore certain extensions and generalizations by involving fractional calculus operators (see Agarwal & Pang, Citation1995, Anastassiou, Citation2011, Andrić, Pečarić, & Perić, Citation2011, Widder, Citation1941).

In this paper, we are interested to give a generalization of integral inequality (Equation 2). Further, we give applications to fractional calculus; many researchers are working in this field and participate a lot in the theory of inequalities, for example, books in references Anastassiou (Citation2009), Baleano, Diethelm, Scalas, and Trujillo (Citation2012), Kilbas, Srivastava, and Trujillo, Citation2006, Bainov and Simeonov (Citation1992), Widder (Citation1941), also see for papers references Andrić, Barbir, Farid, and Pečarić (Citation2014a,Citation2014b), Andrić, Barbir, Farid, and Pečarić (Citation2014a), Andrić, Pečarić, and Perić (Citation2013a,Citation2013b), Andrić et al. (Citation2011), Canavati (Citation1987) and Farid and Pečarić (Citation2012a,Citation2012b).

The organization of the paper is as follows: In Section 2, we give a generalization of integral inequality (Equation 1.2) and some remarks. In Section 3, we give applications for fractional integrals and fractional derivatives, and in Section 4, we give applications for Widder derivatives and linear differential operators. In the last Section 5, we give improvements of these results. In the whole paper, we suppose that all integrals exist.

2. Main results

Here, we give a generalization of integral inequality (Equation 1.2) and some remarks.

Theorem 2.1

Let (Ω1,Σ1,μ1), (Ω2,Σ2,μ2) be measure spaces with σ-finite measures and fi:Ω2R,i=1,2,3,4, be non-negative functions. Let g be the function having representation(2.1) g(x)=Ω1k(x,t)f(t)dμ1(t)(2.1)

where k:Ω2×Ω1R is a general non-negative kernel and f:Ω1R be a real-valued function, and μ2 is a non-decreasing function. If p, q are two real numbers such that 1p+1q=1,p>1, then(2.2) Ω2f1(x)f2(x)g(x)dμ2(x)CΩ2f3(x)g(x)dμ2(x)1p×Ω2f4(x)g(x)dμ2(x)1q(2.2)

whereC=suptΩ1Ω2k(x,t)f1(x)f2(x)dμ2(x)Ω2k(x,t)f3(x)dμ2(x)-1p×Ω2k(x,t)f4(x)dμ2(x)-1q.

Proof

Using Equation 2.1, we haveΩ2f1(x)f2(x)g(x)dμ2(x)=Ω2Ω1f1(x)f2(x)k(x,t)f(t)dμ2(x)dμ1(t)=Ω1Ω2k(x,t)f1(x)f2(x)dμ2(x)f(t)dμ1(t)CΩ1Ω2k(x,t)f3(x)dμ2(x)1pΩ2k(x,t)f4(x)dμ2(x)1qf(t)dμ1(t)=CΩ1λppΩ2k(x,t)f3(x)dμ2(x)+λ-qqΩ2k(x,t)f4(x)dμ2(x)f(t)dμ1(t),

whereλ=Ω2k(x,t)f3(x)dμ2(x)-1pqΩ2k(x,t)f4(x)dμ2(x)1pq.

Therefore, we haveΩ2f1(x)f2(x)g(x)dμ2(x)CλppΩ2f3(x)g(x)dμ2(x)+λ-qqΩ2f4(x)g(x)dμ2(x),

while from value of λ we get (Equation 2.2).

Corollary 2.2

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getΩ2f1(x)f2(x)g(x)dμ2(x)CΩ2f1p(x)g(x)dμ2(x)1pΩ2f2q(x)g(x)dμ2(x)1q

whereC=suptΩ1Ω2k(x,t)f1(x)f2(x)dμ2(x)Ω2k(x,t)f1p(x)dμ2(x)-1p×Ω2k(x,t)f2q(x)dμ2(x)-1q.

Corollary 2.3

If we put f(t)=1 and Ω1=Ω2=[0,) and replace dμ1(t),dμ2(x) by measures dh(t),dx in Theorem 2, then we get Theorem 1.

Remark 2.4

If we put f3(x)=f1p(x),f4(x)=f2q(x),f(t)=1, and Ω1=Ω2=[0,) and replace dμ1(t),dμ2(x) by measures dh(t),dx, then we get a result of Volkov (Citation1972).

3. Applications for fractional integrals

Let [a,b],-<a<b< be a finite interval on real axis R. For fL1[a,b], the left-sided and right-sided Riemann–Liouville fractional integrals of order α>0 are defined byJa+αf(x)=1Γ(α)ax(x-t)α-1f(t)dt,x>a,Jb-αf(x)=1Γ(α)xb(t-x)α-1f(t)dt,x<b.

Here, Γ is the gamma function Γ(α)=0e-ttα-1dt.

Theorem 3.1

Let p, q be two real numbers such that 1p+1q=1,p>1. Then, for α>0, we have(3.1) axf1(x)f2(x)Ja+αf(x)dxCaxf3(x)Ja+αf(x)dx1p×axf4(x)Ja+αf(x)dx1q(3.1)

whereC=supt[a,b]ax(x-t)α-1f1(x)f2(x)dxax(x-t)α-1f3(x)dx-1p×ax(x-t)α-1f4(x)dx-1q.

Proof

If we apply Theorem 2.1 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=(x-t)α-1Γ(α)atx0x<tb,

then g becomes Ja+αf and we get the inequality (Equation 3.1).

Corollary 3.2

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getaxf1(x)f2(x)Ja+αf(x)dxCaxf1p(x)Ja+αf(x)dx1p×axf2q(x)Ja+αf(x)dx1q

whereC=supt[a,b]ax(x-t)α-1f1(x)f2(x)dxax(x-t)α-1f1p(x)dx-1p×ax(x-t)α-1f2q(x)dx-1q.

Theorem 3.3

Let p, q be two real numbers such that 1p+1q=1,p>1. Then, for α>0, we have(3.2) xbf1(x)f2(x)Ja-αf(x)dxCxbf3(x)Ja-αf(x)dx1p×xbf4(x)Ja-αf(x)dx1q(3.2)

whereC=supt[a,b]xb(t-x)α-1f1(x)f2(x)dxxb(t-x)α-1f3(x)dx-1p×xb(t-x)α-1f4(x)dx-1q.

Proof

Applying Theorem 2.1 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=(t-x)α-1Γ(α)xtb0a<tx,

then g becomes Ja-αf and we get the inequality (Equation 3.6).

Corollary 3.4

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getxbf1(x)f2(x)Ja-αf(x)dxCxbf1p(x)Ja-αf(x)dx1p×xbf2q(x)Ja-αf(x)dx1q

whereC=supt[a,b]xb(t-x)α-1f1(x)f2(x)dxxb(t-x)α-1f1p(x)dx-1p×xb(t-x)α-1f2q(x)dx-1q.

Next, we observe the Caputo fractional derivatives (for details see Kilbas et al., Citation2006, Section 2.4, also Anastassiou, Citation2009, p. 449; Baleano et al., Citation2012, p. 16) for α0 define n as(3.3) n=[α]+1,forαN0;n=[α],forαN0,(3.3)

where [·] is the integral part. For fACn[a,b], the left-sided and right-sided Caputo fractional derivatives of order α are defined by(3.4) CDa+αf(x)=1Γ(n-α)axf(n)(t)(x-t)α-n+1dt,(3.4)

and(3.5) CDa-αf(x)=(-1)nΓ(n-α)xbf(n)(t)(t-x)α-n-1dt.(3.5)

Theorem 3.5

Let p, q be two real numbers such that 1p+1q=1,p>1. Then, for fACn[a,b], α0, and n defined in Equation 3.3, we have(3.6) axf1(x)f2(x)CDa+αf(x)dxCaxf3(x)CDa+αf(x)dx1p×axf4(x)CDa+αf(x)dx1q(3.6)

whereC=supt[a,b]ax(x-t)n-α-1f1(x)f2(x)dxax(x-t)n-α-1f3(x)dx-1p×ax(x-t)n-α-1f4(x)dx-1q.

Proof

Applying Theorem 2 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=(x-t)n-α-1Γ(n-α)atx0x<tb,

and replacing f by f(n), g becomes CDa+αf and we get the inequality (Equation 3.6).

Corollary 3.6

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getaxf1(x)f2(x)CDa+αf(x)dxCaxf1p(x)CDa+αf(x)dx1p×axf2q(x)CDa+αf(x)dx1q

whereC=supt[a,b]ax(x-t)n-α-1f1(x)f2(x)dxax(x-t)n-α-1f1p(x)dx-1p××ax(x-t)n-α-1f2q(x)dx-1q.

Theorem 3.7

Let p, q be two real numbers such that 1p+1q=1,p>1. Then, for fACn[a,b], α0, and n defined in Equation 3.3, we have(3.7) xbf1(x)f2(x)CDa-αf(x)dxCxbf3(x)CDa-αf(x)dx1p×xbf4(x)CDa-αf(x)dx1q(3.7)

whereC=supt[a,b]xb(x-t)n-α-1f1(x)f2(x)dxxb(x-t)n-α-1f3(x)dx-1p×xb(x-t)n-α-1f4(x)dx-1q.

Proof

Applying Theorem 2 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=(-1)n(t-x)n-α-1Γ(n-α)xtb00<tx,

and replacing f by f(n), g becomes CDa-αf and we get the inequality (Equation 3.7).

Corollary 3.8

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getxbf1(x)f2(x)CDa-αf(x)dxCxbf1p(x)CDa-αf(x)dx1p×xbf2q(x)CDa+αf(x)dx1q

whereC=supt[a,b]xb(t-x)n-α-1f1(x)f2(x)dxxb(t-x)n-α-1f1p(x)dx-1p×xb(t-x)n-α-1f2q(x)dx-1q.

We continue with extensions that require composition identities for the left-sided Caputo fractional derivatives, given in Andrić et al. (Citation2013b).

Lemma 3.9

Let β>α0, m and n are given by Equation 3.3 for β and α, respectively. Let fACm[a,b] be such that f(i)(a)=0 for i=n,n+1,,m-1. Let CDa+βf,CDa+αfL1[a,b]. Then,CDa+αf(x)=1Γ(β-α)ax(x-t)β-α-1CDa+βf(t)dt,x[a,b].

Theorem 3.10

Let p, q be two real numbers such that 1p+1q=1,p>1. Let β>α0, m and n are given by Equation 3.3 for β and α, respectively. Let fACm[a,b] be such that f(i)(a)=0 for i=n,n+1,,m-1. Let CDa+βf,CDa+αfL1[a,b]. Then, we have(3.8) axf1(x)f2(x)CDa+αf(x)dxCaxf3(x)CDa+αf(x)dx1p×axf4(x)CDa+αf(x)dx1q(3.8)

whereC=supt[a,b]ax(x-t)β-α-1f1(x)f2(x)dxax(x-t)β-α-1f3(x)dx-1pax(x-t)β-α-1f4(x)dx-1q.

Proof

Applying Theorem 2.1 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=(x-t)β-α-1Γ(β-α)atx0x<tb,

and replacing f by CDa+βf, g becomes CDa+αf and we get the inequality (Equation 3.8).

Corollary 3.11

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getaxf1(x)f2(x)CDa+αf(x)dxCaxf1p(x)CDa+αf(x)dx1p×axf2q(x)CDa+αf(x)dx1q

whereC=supt[a,b]ax(x-t)β-α-1f1(x)f2(x)dxax(x-t)β-α-1f1p(x)dx-1p×ax(x-t)β-α-1f2q(x)dx-1q.

Remark 3.12

Using Theorem 2.1 and composition identities for the right-sided Caputo fractional derivatives given in Andrić et al. (Citation2013b, Theorem 2.2), similar results can be stated and proved for the right-sided Caputo fractional derivatives (for details see Andrić et al., Citation2014a; Farid, & Pečarić, Citation2012b).

Results given for the Caputo fractional derivatives can be analogously done for two other types of fractional derivative that we observe: Canavati type and Riemann–Liouville type. Here, as an example inequality for each type of fractional derivatives, we give inequality analogous to the Equation 3.8 obtained with composition identity for the left-sided fractional derivatives. Proofs are omitted.

For more details on the Canavati fractional derivatives, see Canavati (Citation1987): we consider subspace Ca+α[a,b] defined byCa+α[a,b]=fCn-1[a,b]:Ja+n-αf(n-1)C1[a,b].

For fCa+α[a,b], the left-sided Canavati fractional derivative of order α is defined byC¯Da+αf(x)=1Γ(n-α)ddxax(x-t)n-α-1f(n-1)(t)dt=ddxJa+n-αf(n-1)(x).

Composition identity for the left-sided Canavati fractional derivatives is given in Andrić et al. (Citation2011):

Lemma 3.13

Let β>α>0, m=[β]+1, and n=[α]+1. Let fCa+β[a,b] be such that f(i)(a)=0 for i=n-1,n,,m-2. Then, fCa+α[a,b] andC¯Da+αf(x)=1Γ(β-α)ax(x-t)β-α-1C¯Da+βf(t)dt,x[a,b].

Theorem 3.14

Let p, q be two real numbers such that 1p+1q=1,p>1. Let β>α0, m and n given by Equation 3.3 for β and α, respectively. Let fCa+β[a,b] be such that f(i)(a)=0 for i=n-1,n,,m-2. Then, we haveaxf1(x)f2(x)C¯Da+αf(x)dxCaxf3(x)C¯Da+αf(x)dx1p×axf4(x)C¯Da+αf(x)dx1q

whereC=supt[a,b]ax(x-t)β-α-1f1(x)f2(x)dxax(x-t)β-α-1f3(x)dx-1p×ax(x-t)β-α-1f4(x)dx-1q.

For more details on Riemann–Liouville fractional derivatives, see Kilbas et al. Citation2006, Section 2.1: for f:[a,b]R, the left-sided Riemann–Liouville fractional derivative of order α is defined byDa+αf(x)=1Γ(n-α)dndxnax(x-t)n-α-1f(t)dt=dndxnJa+n-αf(x).

The following lemma summarizes conditions in the composition identity for the left-sided Riemann–Liouville fractional derivatives (for details see Andrić et al., Citation2013a).

Lemma 3.15

Let β>α0, m=[β]+1, and n=[α]+1. The composition identityDa+αf(x)=1Γ(β-α)ax(x-t)β-α-1Da+βf(t)dt,x[a,b],

is valid if one of the following conditions holds:

(i)

fJa+βL1[a,b]={f:f=Ja+βφ,φL1[a,b]}.

(ii)

Ja+m-βfACm[a,b] and Da+β-kf(a)=0 for k=1,m.

(iii)

Da+β-1fAC[a,b], Da+β-kfC[a,b], and Da+β-kf(a)=0 for k=1,m.

(iv)

fACm[a,b], Da+βf,Da+αfL1[a,b], β-αN, Da+β-kf(a)=0 for k=1,,m and Da+α-kf(a)=0 for k=1,,n.

(v)

fACm[a,b], Da+βf,Da+αfL1[a,b], β-α=lN, Da+β-kf(a)=0 for k=1,,l.

(vi)

fACm[a,b], Da+βf,Da+αfL1[a,b], and f(k)(a)=0 for k=0,,m-2.

(vii)

fACm[a,b], Da+βf,Da+αfL1[a,b], βN, and Da+β-1f is bounded in a neighborhood of m=a.

Theorem 3.16

Let p, q be two real numbers such that 1p+1q=1,p>1. Also, let β>α0, m=[β]+1, and n=[α]+1. Suppose that one of the conditions in (i)-(vii) in Lemma 3.15 holds for {β,α,f} and let Da+βfL1[a,b], then we haveaxf1(x)f2(x)Da+αf(x)dxCaxf3(x)Da+αf(x)dx1p×axf4(x)Da+αf(x)dx1q

whereC=supt[a,b]ax(x-t)β-α-1f1(x)f2(x)dxax(x-t)β-α-1f3(x)dx-1p×ax(x-t)β-α-1f4(x)dx-1q.

Next, we give the results for a generalized fractional integral operator, the Saigo fractional integral operator (for details see, Saigo, Citation1978).

Let α>0,β,ηR. Then, the Saigo fractional integrals Ia,tα,β,η of order α for a real-valued continuous function f are defined by:(3.9) Ia,xα,β,ηf(x)=x-α-βΓ(α)ax(x-t)α-12F1(α+β,-η;α;1-tx)f(t)dt,x[a,b].(3.9)

where, the function 2F1(..) appearing as the kernal for operator (Equation 3.9) is the Gaussian hypergeometric function defined by2F1(a,b;c;t)=n=0(a)n(b)n(c)nn!tn,

and (a)n is the Pochhammer symbol: (a)n=a(a+1)(a+n-1),(a)0=1.

Theorem 3.17

Let p, q be two real numbers such that 1p+1q=1,p>1. Then, for α>0, we have(3.10) axf1(x)f2(x)Ia,xα,β,ηf(x)dxCaxf3(x)Ia,xα,β,ηf(x)dx1p×axf4(x)Ia,xα,β,ηf(x)dx1q(3.10)

whereC=supt[a,b]axx-α-β2F1(α+β,-η,α;1-tx)(x-t)α-1f1(x)f2(x)dx×axx-α-β2F1(α+β,-η,α;1-tx)(x-t)α-1f3(x)dx-1p×axx-α-β2F1(α+β,-η,α;1-tx)(x-t)α-1f4(x)dx-1q.

Proof

Applying Theorem 2 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernelk(x,t)=x-α-βΓ(α)2F1(α+β,-η,α;1-tx)(x-t)α-1,atx;0,x<tb,g becomes Ia,xα,β,ηf and we get the inequality (Equation 3.10).

Corollary 3.18

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getaxf1(x)f2(x)Ia,xα,β,ηf(x)dxCaxf1p(x)Ia,xα,β,ηf(x)dx1p×axf2q(x)Ia,xα,β,ηf(x)dx1q

whereC=supt[a,b]axx-α-β2F1α+β,-η,α;1-tx(x-t)α-1f1(x)f2(x)dx×axx-α-β2F1α+β,-η,α;1-tx(x-t)α-1f(x)pdx-1p×axx-α-β2F1α+β,-η,α;1-tx(x-t)α-1f2q(x)dx-1q.

Remark 3.19

If we put β=-α in Theorem 3.17, then we get the results for the right sided Riemann–Liouville fractional integral.

4. Applications for Widder derivatives and linear differential operators

In this section, we apply our results for Widder derivatives and linear differential operators. The following are taken from Widder (Citation1928).

Let f,u0,u1,,unCn+1([a,b]),n0, and the Wronskians(4.1) Wi(x):=W[u0(x),u1(x),,ui(x)]:=u0(x)u1(x)...ui(x)u0(x)u1(x)...ui(x)...u0i(x)u1i(x)...uii(x),(4.1) i=1,,n. Here, W0(x)=u0(x). Assume W0(x)>0 over [a,b],i=1,,n.

For i0, the differential operator of order i (Widder derivative):(4.2) Lif(x):=W[u0(x),u1(x),,ui-1(x),f(x)]Wi-1(x)(4.2) i=1,,n+1;L0f(x):=f(x),x[a,b]. Consider also(4.3) gi(x,t):=1Wi(t)u0(t)u1(t)...ui(t)u0(t)u1(t)...ui(t)...u0i-1(t)u1i-1(t)...uii-1(x)u0(x)u1(x)...ui(x),(4.3) i=1,,n;g0(x,t):=u0(x)u0(t),x,t[a,b].

Example 4.1

Sets of the form {u0,u1,,un} are {u0,u1,,un}, {1,sinx,-cosx,-sin2x,cos2x,,(-1)nsinnx,(-1)ncosnx}, etc.

We also mention the generalized Widder–Talylor’s formula (see Anastassiou, Citation2011; Widder, Citation1928).

Theorem 4.2

Let the functions f,u0,u1,,unCn+1([a,b]), and the Wronskians W0(x),W1(x),,Wn(x)>0 on [a,b],x[a,b]. Then, for t[a,b], we have(4.4) f(x)=y(t)u0(x)u0(t)+L1f(t)g1(x,t)++Lnf(t)gn(x,t)+Rn(x),(4.4)

whereRn(x):=txgn(x,s)Ln+1f(s)ds

For example (Widder, Citation1928), one could take u0(x)=c>0. If ui(x)=xi,i=0,1,,n, defined on [a,b],, then Liy(t)=fi(t) and gi(x,t)=(x-t)ii!,t[a,b]. We need the following result.

Corollary 4.3

By additionally assuming for fixed x0[a,b] that Lif(x0)=0,i=0,1,,n, we get that(4.5) f(x)=x0xgn(x,s)Ln+1f(s)ds.(4.5)

Note that all the results of this section are under the assumptions of Theorem 4.2 and Corollary 4.3.

Theorem 4.4

Let p, q be two real numbers such that 1p+1q=1,forp>1. Then, we have(4.6) x0xf1(x)f2(x)f(x)dxCx0xf3(x)f(x)dx1px0xf4(x)f(x)dx1q(4.6)

whereC=supt[a,b]x0xgn(x,t)f1(x)f2(x)dxx0xgn(x,t)f3(x)dx-1p×x0xgn(x,t)f4(x)dx-1q.

Proof

Applying Theorem 2 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernel k(x,t) with particular kernel gn(x,t), also replacing f by Ln+1f,g becomes f and we get the inequality (Equation 4.6).

Corollary 4.5

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getx0xf1(x)f2(x)f(x)dxCx0xf1p(x)f(x)dx1px0xf2q(x)f(x)dx1q

whereC=supt[a,b]x0xgn(x,t)f1(x)f2(x)dxx0xgn(x,t)f1p(x)dx-1p×x0xgn(x,t)f2q(x)dx-1q.

Onward, we follow Kreider, Kuller, and Perkins (Citation1966, pp. 145–154).

Let I be a closed interval of R. Let ai(x),i=0,1,,n-1(nN),h(x) be continuous functions on I and let L=Dn+an-1(x)Dn-1++a0(x) be a fixed linear differential operator on Cn(I). Let y1(x),,yn(x) be a set of linear independent solutions to Ly=0. Here, the associated Green’s function for L is(4.7) H(x,t):=y1(t)...yn(t)y1(t)...yn(t)...y1n-2(t)...ynn-2(t)y1(x)...yn(x)y1(t)...yn(t)y1(t)...yn(t)...y1n-2(t)...ynn-2(t)y1(t)...yn(t),(4.7)

which is a continuous function on I2. Consider fixed x0I, then(4.8) y(x)=x0xH(x,t)h(t)dt,xI(4.8)

is the unique solution to the initial value problem(4.9) Ly=h;y(i)(x0)=0,i=0,1,,n-1.(4.9)

Theorem 4.6

Let p, q be two real numbers such that 1p+1q=1,forp>1. Then, we have(4.10) x0xf1(x)f2(x)y(x)dxCx0xf3(x)y(x)dx1px0xf4(x)y(x)dx1q(4.10)

whereC=supt[a,b]x0xH(x,t)f1(x)f2(x)dxx0xH(x,t)f3(x)dx-1p×x0xH(x,t)f4(x)dx-1q.

Proof

Applying Theorem 2 with Ω1=Ω2=(a,b),dμ1(x)=dx,dμ2(t)=dt and the kernel k(x,t) with particular kernel H(x,t), also replacing f by h,g becomes y and we get the inequality (Equation 4.10).

Corollary 4.7

If we set f3(x)=f1p(x)andf4(x)=f2q(x), then we getx0xf1(x)f2(x)y(x)dxCx0xf1p(x)y(x)dx1px0xf2q(x)y(x)dx1q

whereC=supt[a,b]x0xH(x,t)f1(x)f2(x)dxx0xH(x,t)f1p(x)dx-1p×x0xH(x,t)f2q(x)dx-1q.

5. Generalization of previous results

In this last section, we want to give improvements of the previous results.

Theorem 5.1

Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with σ-finite measures and fi:Ω2R,i=1,,2n, be non-negative functions. Let g be the function that has the following representation(5.1) g(x)=Ω1k(x,t)f(t)dμ1(t)(5.1)

where k:Ω2×Ω1R is a general non-negative kernel and f:Ω1R be a real-valued function. If pi,i=1,,n are positive real numbers such that in1pi=1, then(5.2) Ω2j=1nfj(x)g(x)dμ2(x)Cj=1nΩ2fn+j(x)g(x)dμ2(x)1pj(5.2)

whereC=suptΩ1Ω2k(x,t)f1(x)fn(x)dμ2(x)×j=1nΩ2k(x,t)fn+j(x)dμ2(x)-1pj.

Proof

For fixed λ>0,λ1 we define ci as followsci=1lnλlnj=1nΩ2fn+j(x)g(x)dμ2(x)1pjΩ2fn+i(x)g(x)dμ2(x),i=1,,n.

For these numbers, one can observei=1ncipi=0

and from this we obtain(5.3) i=1nλci1pi=1.(5.3)

Using the representation of g, and Equation 5.3, we haveΩ2f1(x)fn(x)g(x)dμ2(x)=Ω2Ω1f1(x)fn(x)k(x,t)f(t)dμ2(x)dμ1(t)=Ω1Ω2k(x,t)f1(x)fn(x)dμ2(x)f(t)dμ1(t)CΩ1j=1nΩ2fn+j(x)k(x,t)dμ2(x)1pjf(t)dμ1(t)=CΩ1j=1nΩ2λcjfn+j(x)k(x,t)dμ2(x)1pjf(t)dμ1(t)

Now, using the inequality between arithmetic and geometric means, we haveCΩ1j=1nΩ2λcjfn+j(x)k(x,t)dμ2(x)pjf(t)dμ1(t).

Thus, we haveΩ2f1(x)fn(x)g(x)dμ2(x)Cj=1nλcjpjΩ2fn+j(x)g(x)dμ2(x).

Using definition of ci, we get (Equation 5.2).

Corollary 5.2

If we set fn+j(x)=fj(x)pj, then we haveΩ2j=1nfj(x)g(x)dμ2(x)Cj=1nΩ2fj(x)pjg(x)dμ2(x)1pj

whereC=suptΩ1Ω2k(x,t)f1(x)fn(x)dμ2(x)×j=1nΩ2k(x,t)fj(x)pjdμ2(x)-1pj.

Corollary 5.3

If we put f(t)=1 and Ω1=Ω2=[0,], and replace dμ1(t),dμ2(x) by measures dh(t),dx, respectively, in Theorem 5.1, then we get Varośenec (Citation1995, Theorem 1). Further, if we set fn+j(x)=fj(x)pj, we get a generalization of Volkov’s result (Citation1972).

Remark 5.4

If we take n=2 in Equation 5.2 of Theorem 5.1, we get Equation 2.2 of Theorem 2.1.

Remark 5.5

Applications of results in this section for various types of fractional integrals and fractional derivatives can be observed in Sections 3 and 4 and we omit the details.

Additional information

Funding

The authors received no direct funding for this research.

Notes on contributors

Ghulam Farid

I am working as Assistant Professor in the department of Mathematics COMSATS Institute of Information Technology, Attock Campus, Pakistan. I have completed my PhD in the subject of Mathematics from Abdus Salam School of Mathematical Sciences, Govt. College University, Lahore, Pakistan with specialization in Mathematical inequalities. My research interest area is Mathematical analysis, Functional analysis, Fractional Calculus, Mathematical Statistics. Recent paper is on generalization of an integral inequality and its applications in fractional calculus. Fractional integral inequalities are useful in establishing the uniqueness of solutions of certain partial differential equations also provides upper and lower bounds for the solutions of fractional boundary value problems.

References

  • Agarwal, R. P., & Pang, P. Y. H. (1995). Opial inequalities with applications in differential and difference equations. Dordrecht: Kluwer Academic.
  • Anastassiou, G. A. (2009). Fractional differentiation inequalities. New York, NY: Springer.
  • Anastassiou, G. A. (2011). Advanced inequalities (Vol. 11). Singapore: World Scientific.
  • Andrić, M., Pe\v{c}arić, J., & Peri\’{c}, I. (2011). Improvements of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities. Dynamic Systems and Applications, 20, 383–394.
  • Andri\’{c}, M., Pe\v{c}ari\’{c}, J., & Peri\’{c}, I. (2013a). A multiple Opial type inequality for the Riemann--Liouville fractional derivatives. Journal of Mathematical Inequalities, 7, 139–150.
  • Andri\’{c}, M., Pe\v{c}ari\’{c}, J., & Peri\’{c}, I. (2013b). Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities. Mathematical Inequalities & Applications, 16, 657–670.
  • Andri\’{c}, M., Barbir, A., Farid, G., & Pe\v{c}ari\’{c}, J. (2014a). Opial-type inequality due to Agarwal--Pang and fractional differential inequalities. Integral Transforms and Special Functions, 25, 324–335.
  • Andri\’{c}, M., Barbir, A., Farid, G., & Pe\v{c}ari\’{c}, J. (2014b). More on certain Opial-type inequality for fractional derivatives and exponentially convex functions. Nonlinear Functional Analysis and Applications, 19, 563–584.
  • Bainov, D., & Simeonov, P. (1992). Integral inequalities and applications. Dordrecht: Kluwer Academic.
  • Baleano, D., Diethelm, K., Scalas, E., & Trujillo, J. J. (2012). Fractional calculus: Models and numerical methods. Singapore: World Scientific.
  • Canavati, J. A. (1987). The Riemann--Liouville integral. Nieuw Archief Voor Wiskunde, 5, 53–-75.
  • Farid, G., & Pečarić, J. (2012a). Opial type integral inequalities for fractional derivatives. Fractional Differential Calculus, 2, 31–54.
  • Farid, G., & Pe\v{c}ari\’{c}, J. (2012b). Opial type integral inequalities for fractional derivatives II. Fractional Differential Calculus, 2, 139–155.
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J.J. (2006). Theory and applications of fractional differential equations ( North-Holland mathematics studies, Vol. 204). Amsterdam: Elsevier.
  • Kreider, D., Kuller, R., & Perkins, F. (1966). An introduction to linear analysis. Reading, MA: Addison-Wesley.
  • Mitrinovi\’{c}, D. S., & Pe\v{c}ari\’{c}, J. (1991). Two integral inequalities. SEA Bulletin of Mathematics, 15, 153–155.
  • Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric functions. Mathematical reports, Kyushu University, 11, 135–143.
  • Varo\’{s}enec, S. (1995). A remark on Volkov’s result. Rad HAZU, Matematicke znanosti, 470, 199–203.
  • Volkov, V. N. (1972). Utočnenie neravenstva Geldera. Uč. Zap. Mosk. Gos. Ped. Inst. im. B. I. Lenena-Neravenstva-Moskva, 460, 110–115.
  • Widder, D. V. (1928). A generalization of Taylor’s series. Transactions of AMS, 30, 126–154.
  • Widder, D. V. (1941). The Laplace transform. Princeton, NJ: Princeton University Press.