91
Views
0
CrossRef citations to date
0
Altmetric
Review

Discrete Transfer and Finite Volume Methods for Highly Anisotropically Scattering in Radiative Heat Analysis

ORCID Icon, ORCID Icon &
Pages 195-214 | Published online: 13 Aug 2020
 

Abstract

The present work deals with the performance assessment of the finite volume method (FVM) and discrete transfer method (DTM) in term of their abilities to accurately satisfy conservation of both scattered energy and asymmetry factor of the scattering phase function, after angular discretization and their computational time to calculate the scattering phase function, in radiative transfer problems. Studies are carried out for many representative benchmark problems dealing with one-dimensional steady state radiative heat transfer through participating gray media under diffuse incident irradiation. For problems considered, tests were performed for a wide range of optical thickness, angular resolution, and anisotropic scattering phase function approximation. The results from both DTM and FVM formulations are presented and compared with available analytical and numerical literature solutions. While the two methods were found to give practically the same results, the DTM was found to be much computationally economical than the FVM, to evaluate the scattering phase function.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 944.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.