97
Views
1
CrossRef citations to date
0
Altmetric
Articles

Impact response of sandwiches with open-cell casting metal foam and GFRP skins

, , , &
Pages 44-49 | Published online: 18 Feb 2016
 

Abstract

The main advantage of using sandwich structures is their high strength, high energy absorbing capacity and high bending stiffness to weight ratio. Therefore, they are unique for the applications where the light-weight design philosophy is a crucial aspect. While sandwich structures with polymeric foams have been applied for many years, recently there is a growing interest on a new generation composite sandwiches with metallic foam core. In this study, the influence of pores per inch (ppi) of the foam on low-velocity impact response of the entire panel has been investigated. The glass fibre reinforced plastic (GFRP) skins produced by vacuum bagging technique in the study were easily bonded to the foam surfaces using a commercial adhesive in order to combine the composite sandwich panel. The low-velocity impact tests are performed to the sandwiches with the combination of two different magnesium (Mg) alloy foams (having 10 pores per inch (ppi) and 20 pores per inch), and carried out by a drop test machine with different values of impact velocity ranging from 1 to 10 m/s in order to analyse its effect. The main results of the impact tests are: force-displacement curves, peak force values, absorbed energy and influence of impact velocity.

Acknowledgements

The financial contribution is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.