68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental approach to bio-waste nanoparticles suitable for radiator coolant

, ORCID Icon, , , &
Accepted 09 Mar 2023, Published online: 17 Mar 2023
 

ABSTRACT

The purpose of this research is to experimentally test the thermo physical properties of the corn cob ash nanofluid as a heat transfer fluid. The experimental procedure involve in preparation of extraction of silica nanoparticles from corn cob ash agro-waste and its performance evaluations. The results obtained from the EDS test shows the dominant constituents of corn cob to be Silica, Oxygen, Aluminium, and Calcium with the highest concentrations of 40.20%, 20.20%, 15.65%, and 10.40% respectively. However, with the use of the chemical synthesis method, silica nanoparticle powder made from corn cob ash was produced (CCA). The generated silica particles ranged in size from 10 to 28 nm, with an average diameter well inside the nanometre range at 18.585 nm. The combination of ‘Water, Coolant and Nanofluid (0.0015% Concentration)’ gives the maximum heat transfer rate, demonstrating that it is the greatest cooling fluid out of the all the coolants that were experimented. Conclusively, this cooling fluid with the highest rate of heat transfer, ‘Water + Coolant + Nanofluid (0.0015% Concentration)’, would increase the performance of the car engine cooling system, thereby resulting in less fuel consumption and making it more economically efficient for general uses.

Abbreviations

EDS=

Electro dispersive X-ray spectroscopy

FTIR=

Fourier transform infrared

CCA=

Corn Cob Ash

CNTs=

Carbon Nanotubes

PNP=

Polymer Nanoparticle

NPs=

Nanoparticles

MNPs=

Metal Nanoparticles

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.