113
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics optimization of composite phase-change wall during intermittent heating process

, , &
Pages 541-551 | Published online: 02 Aug 2019
 

Abstract

The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage and release processes, the influences of different parameters on the dynamic thermal processes of composite-PCW were studied, including the position and thickness of phase-change material (PCM), phase transition temperature, phase-change latent heat, and PCM thermal conductivity, according to two typical intermittent conditions summarized by experimental data. With large heat storage efficiency η and small heat loss rate ε, the optimized composite-PCW that was adaptive for intermittent heating was the composite-PCW with 10 mm PCM integrated to the wall inside. Its phase-transition temperature was 19–20 °C (66.2–68 °F), the phase-change latent heat was 220 kJ/kg (95.58 btu/lb), and the thermal conductivity was 0.4 W/(m·K) (0.23 btu/(ft·h·°F)) at liquid states and 0.8 W/(m·K) (0.46 btu/(ft·h·°F)) at solid states.

Additional information

Funding

This project is funded by the National Key R&D Program of China (2016YFC0700400) and the National Natural Science Foundation of China (51778382).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 78.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.