782
Views
0
CrossRef citations to date
0
Altmetric
Mitogenome Announcement

Complete mitochondrial genome sequence of Bekko Tombo Libellula angelina Selys, 1883 (Odonata: Libellulidae)

, &
Pages 2201-2203 | Received 08 May 2019, Accepted 17 May 2019, Published online: 11 Jul 2019

Abstract

The dragonfly Libellula angelina Selys, 1883 (Odonata: Libellulidae) has been listed as a critically endangered species by the International Union for Conservation of Nature (IUCN) and is also an endangered insect in South Korea. We sequenced the whole genome (15,233 bp) of L. angelina species, which included a set of typical genes and one major non-coding AT-rich region with an arrangement identical to that observed in most insect genomes. The A + T-rich region harbored one identical repeat composed of 65 bp and two tRNA-like structures (trnF and trnK-like sequences) with proper anticodon and clover-leaf structures. Phylogenetic reconstruction using the concatenated sequences of 13 protein-coding genes (PCGs) and two rRNAs of the representative odonate mitogenomes utilizing both Bayesian inference and maximum-likelihood methods revealed a strong support for the monophyletic Zygoptera and a moderate to high support for the monophyletic Anisoptera suborders. Unlike that in conventional phylogenetic analysis, a relatively strong sister relationship was revealed between the suborders of Anisozygoptera and Zygoptera.

Libellula angelina Selys, 1883 (Odonata: Libellulidae), also known as Bekko Tombo is distributed throughout northern China, Japan, and Korea (Inoue Citation2006; Jung Citation2012), which is classified as a critically endangered species by the International Union for Conservation of Nature (IUCN), and is also an endangered species in Korea.

An L. angelina adult male was collected at Seoun-myeon, Gyeonggi-do, Korea (36°56'17" N, 127°15'44" E) on June 2015 after obtaining the necessary approvals. This voucher specimen was deposited at National Institute of Biological Resources, Incheon, Korea, with the accession number GEIBIN0000339512. DNA was extracted from the hind legs of L. angelina species using a Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA), and four long overlapping fragments (LFs; COI-ND5, ND5-CytB, CytB-srRNA, and srRNA-COI) were amplified using four sets of primers designed from the available mitogenomes of Odonata (Lee et al. Citation2009; Lin et al. Citation2010; Wang et al. Citation2015); these were then used as templates for primer walking. The L. angelina sequence was deposited in GenBank with the accession number MG189907.

We reconstructed the odonate phylogenetic tree using the Bayesian inference (BI) and maximum-likelihood (ML) methods based on the concatenated nucleotide sequences of 13 protein-coding genes (PCGs) and two rRNA genes. The optimal partitioning scheme (6 partitions) and substitution model (GTR + Gamma + I) were determined using the PartitionFinder 2 and the Greedy algorithm (Lanfear et al. Citation2012, Citation2014, Citation2016). BI and ML methods were implemented in CIPRES Portal v. 3.1 (Miller et al. Citation2010).

The 15,233 bp complete mitogenome of L. angelina consisted of two rRNAs, 22 tRNAs, 13 PCGs, and one A + T-rich region. Twelve PCGs had the typical ATN start codon, whereas ND1 had the atypical TTG codon. Nine of the 13 PCGs had a complete stop codon; however, COI, COII, COII, and ND5 had incomplete stop codons, i.e. T or TA. The arrangement of this genome was identical to that typically observed in other insects (Cameron Citation2014).

The A + T-rich region of L. angelina was 529 bp. It harboured two identical 55 bp copies, separated by a 57 bp sequence. Additionally, the A + T-rich region of L. angelina had two tRNA-like structures: one trnF-like structure encoded in the major strand and another trnK-like structure, encoded in the minor strand.

Both the BI and ML methods exhibited identical topology. Both the Anisoptera and Zygoptera suborders were monophylies () although the Anisoptera monophyly was poorly supported by ML [bootstrap (BS) = 37%], whereas it was strongly supported by BI [Bayesian posterior probabilities (BPP) = 0.89]. In addition, all the superfamilies (Calopterygoidea and Coenagrionoidea in Zygoptera; and Libelluloidea and Gomphoidea in Anisoptera) and families (Euphaeidae and Calopterygidae in Calopterygoidea; Coenagrionidae in Coenagrionoidea; Libellulidae in Libelluloidea; and Gomphidae in Gomphoidea) were consistently and strongly supported as monophyletic groups. All the analyses consistently supported the sister relationship between the Anisozygoptera and Zygoptera suborders, with moderate to high nodal supports (BPP = 1; BS = 75). The sister relationship between the Zygoptera and Anisozygoptera suborders was unconventional (Rehn Citation2003; Davis et al. Citation2011; Kim et al. Citation2014); however, recent mitogenome-based phylogenetic results consistently supported the sister relationship between these two suborders (Yong et al. Citation2016; Jeong et al. Citation2018). Thus, more diverse taxonomic groups might be helpful to correctly infer the odonate phylogeny.

Figure 1. Bayesian inference (BI) method-based phylogenetic tree constructed for the order Odonata using the concatenated sequences of 13 protein-coding genes (PCGs) and two rRNAs. The numbers at each node indicate the bootstrap support using the maximum-likelihood (ML) method (above nodes) and the Bayesian posterior probabilities (BPP; below nodes) using the BI method. The scale bar indicates the number of substitutions per site. Two species belonging to the order Ephemeroptera were used as outgroups. GenBank accession numbers are as follows: Euphaea ornata, KF718295 (Cheng et al. Citation2018); Euphae decorata, KF718294 (Cheng et al. Citation2018); Euphae formosa, HM126547 (Lin et al. Citation2010); Euphae yayeyamana, KF718293 (Cheng et al. Citation2018); Pseudolestes mirabilis, FJ606784 (unpublished); Mnais costalis, KU871065 (Lorenzo-Carballa et al. Citation2016); Vestalis melania, JX050224 (Chen et al. Citation2015); Atrocalopteryx atrata, KP233805 (unpublished); Ischnura elegans, KU958378 (Feindt et al. CitationCitation2016a); Ischnura pumilio, KC878732 (Lorenzo-Carballa et al. Citation2014); Megaloprepus caerulatus, KU958377 (Feindt et al. Citation2016b); Platycnemis foliacea, KP233804 (unpublished); Epiophlebia superstes, JX050223 (Wang et al. Citation2015); Orthetrum chrysis, KU361233 (Yong et al. Citation2016); Orthetrum testaceum, KU361235 (Yong et al. Citation2016); Orthetrum glaucum, KU361232 (Yong et al. Citation2016); Orthetrum sabina, KU361234 (Yong et al. Citation2016); Nannophya pygmaea, KY402222 (Jeong et al. Citation2018); Hydrobasileus croceus, KM244659 (Tang et al. Citation2014); Brachythemis contaminata, KM658172 (Yu et al. Citation2016); Macromia daimoji MF990748 (Kim et al. Citation2018); Anax imperator, KX161841 (Herzog et al. Citation2016); Davidius lunatus, EU591677 (Lee et al. Citation2009); Ictinogomphus sp., KM244673 (Tang et al. Citation2014); Isonychia ignota, HM143892 (unpublished); and Ephemera orientalis, EU591678 (Lee et al. Citation2009).

Figure 1. Bayesian inference (BI) method-based phylogenetic tree constructed for the order Odonata using the concatenated sequences of 13 protein-coding genes (PCGs) and two rRNAs. The numbers at each node indicate the bootstrap support using the maximum-likelihood (ML) method (above nodes) and the Bayesian posterior probabilities (BPP; below nodes) using the BI method. The scale bar indicates the number of substitutions per site. Two species belonging to the order Ephemeroptera were used as outgroups. GenBank accession numbers are as follows: Euphaea ornata, KF718295 (Cheng et al. Citation2018); Euphae decorata, KF718294 (Cheng et al. Citation2018); Euphae formosa, HM126547 (Lin et al. Citation2010); Euphae yayeyamana, KF718293 (Cheng et al. Citation2018); Pseudolestes mirabilis, FJ606784 (unpublished); Mnais costalis, KU871065 (Lorenzo-Carballa et al. Citation2016); Vestalis melania, JX050224 (Chen et al. Citation2015); Atrocalopteryx atrata, KP233805 (unpublished); Ischnura elegans, KU958378 (Feindt et al. CitationCitation2016a); Ischnura pumilio, KC878732 (Lorenzo-Carballa et al. Citation2014); Megaloprepus caerulatus, KU958377 (Feindt et al. Citation2016b); Platycnemis foliacea, KP233804 (unpublished); Epiophlebia superstes, JX050223 (Wang et al. Citation2015); Orthetrum chrysis, KU361233 (Yong et al. Citation2016); Orthetrum testaceum, KU361235 (Yong et al. Citation2016); Orthetrum glaucum, KU361232 (Yong et al. Citation2016); Orthetrum sabina, KU361234 (Yong et al. Citation2016); Nannophya pygmaea, KY402222 (Jeong et al. Citation2018); Hydrobasileus croceus, KM244659 (Tang et al. Citation2014); Brachythemis contaminata, KM658172 (Yu et al. Citation2016); Macromia daimoji MF990748 (Kim et al. Citation2018); Anax imperator, KX161841 (Herzog et al. Citation2016); Davidius lunatus, EU591677 (Lee et al. Citation2009); Ictinogomphus sp., KM244673 (Tang et al. Citation2014); Isonychia ignota, HM143892 (unpublished); and Ephemera orientalis, EU591678 (Lee et al. Citation2009).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea [NIBR201503204].

References

  • Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59:95–117.
  • Chen MY, Chaw SM, Wang JF, Villanueva RJT, Nuñeza OM, Lin CP. 2015. Mitochondrial genome of a flashwing demoiselle, Vestalis melania from the Philippine Archipelago. Mitochondrial DNA. 26:720–721.
  • Cheng YC, Chen MY, Wang JF, Liang AP, Lin CP. 2018. Some mitochondrial genes perform better for damselfly phylogenetics: species‐ and population‐level analyses of four complete mitogenomes of Euphaea sibling species. Syst Entomol. 43:702–715.
  • Davis RB, Nicholson DB, Saunders ELR, Mayhew PJ. 2011. Fossil gaps inferred from phylogenies alter the apparent nature of diversification in dragonflies and their relatives. BMC Evol Biol. 11:252.
  • Feindt W, Herzog R, Osigus H-J, Schierwater B, Hadrys H. 2016a. Short read sequencing assembly revealed the complete mitochondrial genome of Ischnura elegans Vander Linden, 1820 (Odonata: Zygoptera). Mitochondrial DNA B. 1:574–576.
  • Feindt W, Osigus H-J, Herzog R, Mason CE, Hadrys H. 2016b. The complete mitochondrial genome of the neotropical helicopter damselfly Megaloprepus caerulatus (Odonata: Zygoptera) assembled from next generation sequencing data. Mitochondrial DNA B. 1:497–499.
  • Herzog R, Osigus HJ, Feindt W, Schierwater B, Hadrys H. 2016. The complete mitochondrial genome of the emperor dragonfly Anax imperator LEACH, 1815 (Odonata: Aeshnidae) via NGS sequencing. Mitochondrial DNA B. 21:783–786.
  • Inoue K. 2006. Libellula angelina. The IUCN Red List of Threatened Species. IUCN 2006: e.T11928A3315484.
  • Jeong SY, Kim MJ, Wang AR, Kim S-S, An J, Kim I. 2018. Complete mitochondrial genome sequence of the tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae). Conserv Genet Resour. 10:355–358.
  • Jung KS. 2012. The dragonflies and damselflies of Korea. Seoul: Nature and Ecology.
  • Kim MJ, Jeong SY, Wang AR, An J, Kim I. 2018. The complete mitochondrial genome sequence of Macromia daimoji Okumura, 1949 (Odonata: Macromiidae). Mitochondrial DNA B. 3:365–367.
  • Kim MJ, Jung KS, Park NS, Wan X, Kim K-G, Jun J, Yoon TJ, Bae YJ, Lee SM, Kim I. 2014. Molecular phylogeny of the higher taxa of Odonata (Insecta) inferred from COI, 16S rRNA, 28S rRNA, and EF1-α sequences. Entomol Res. 44:65–79.
  • Lanfear R, Calcott B, Ho SY, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 29:1695–1701.
  • Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol. 14:82.
  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 34:772–773.
  • Lee EM, Hong MY, Kim MI, Kim MJ, Park HC, Kim KY, Lee IH, Bae CH, Jin BR, Kim I. 2009. The complete mitogenome sequences of the palaeopteran insects Ephemera orientalis (Ephemeroptera: Ephemeridae) and Davidius lunatus (Odonata: Gomphidae). Genome. 52:810–817.
  • Lin CP, Chen MY, Huang JP. 2010. The complete mitochondrial genome and phylogenomics of a damselfly, Euphaea formosa support a basal Odonata within the Pterygota. Gene. 468:20–29.
  • Lorenzo-Carballa MO, Thompson DJ, Cordero-Rivera A, Watts PC. 2014. Next generation sequencing yields the complete mitochondrial genome of the scarce blue-tailed damselfly, Ischnura pumilio. Mitochondrial DNA. 25:247–248.
  • Lorenzo-Carballa MO, Tsubaki Y, Plaistow SJ, Watts PC. 2016. The complete mitochondrial genome of the broad-winged damselfly Mnais costalis Selys (Odonata: Calopterygidae) obtained by next-generation sequencing. Int J Odonatol. 19:191–198.
  • Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the 9th Gateway Computing Environments Workshop (GCE), IEEE, 14 November 2010, New Orleans, LA; p. 1–8.
  • Rehn AC. 2003. Phylogenetic analysis of higher-level relationships of Odonata. Syst Entomol. 28:181–239.
  • Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, Zhou X. 2014. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 42:e166.
  • Wang J-F, Chen M-Y, Chaw S-M, Morii Y, Yoshimura M, Sota T, Lin C-P. 2015. Complete mitochondrial genome of an enigmatic dragonfly, Epiophlebia superstes (Odonata, Epiophlebiidae). Mitochondrial DNA. 26:718–719.
  • Yong H-S, Song S-L, Suana IW, Eamsobhana P, Lim P-E. 2016. Complete mitochondrial genome of Orthetrum dragonflies and molecular phylogeny of Odonata. Biochem Syst Ecol. 69:124–131.
  • Yu P, Cheng X, Ma Y, Yu D, Zhang J. 2016. The complete mitochondrial genome of Brachythemis contaminata (Odonata: Libellulidae). Mitochondrial DNA A. 27:2272–2273.