294
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of mesoporous zinc oxide nanoparticles

, , &
Received 27 Sep 2020, Accepted 18 Oct 2021, Published online: 01 Nov 2021
 

Abstract

In this investigation, highly crystalline and mesoporous Zinc oxide (ZnO) nanoparticles with the large surface area were synthesized without calcination. Furthermore, the effects of different pH values on structural, physicochemical and textural properties of ZnO nanoparticles were comprehensively investigated. Rietveld refinement implied that the pH variation had significant effects on the crystal structure of ZnO nanoparticles. The phase, molecular and elemental structures confirmed the formation of ZnO as a major phase in all nanopowders. The morphology of ZnO nanoparticles was irregular with an average size of 45 ± 9 nm. Both phase and atomic structures confirmed the polycrystalline arrangement of ZnO nanoparticles. Moreover, isotherms confirmed the mesoporous structure of all ZnO nanoparticles with superior specific surface area and porosity volume. Thus, owing to the concoction of high crystallinity, superior surface area and porosity volume, resultant ZnO nanoparticles can be effectively employed for diverse multifunctional therapeutic applications.

Disclosure statement

There is no conflict of interest related to the present work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 674.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.