187
Views
0
CrossRef citations to date
0
Altmetric
Articles

Green and chemical reduction approaches for facile pH-dependent synthesis of gold nanoparticles

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 1396-1404 | Received 19 Oct 2021, Accepted 28 Mar 2022, Published online: 22 May 2022
 

Abstract

This study compares the green synthesis method using the Lycium ruthenicum (L. Ru) with wet chemical extraction using citrate reduction to synthesize stable gold nanoparticles (AuNPs). The effect of pH on the synthesized AuNPs has also been evaluated in the present investigation. AuNPs were synthesized successfully by both methods, as well; by the way, there were reported differences between the microstructure of resulting powders. For AuNPs synthesized using the green method, a pH value of 3 was reported to be the optimum pH due to the characteristics of synthesized AuNPs. In the mentioned pH, the AuNPs were spherical, mono-dispersed, and highly crystalline, characteristic of a well-done synthesis. Both chemo- and biosynthesized AuNPs revealed a relatively smaller particle size (33.92 and 55.65 nm, respectively) with well-dispersed spherical morphology under alkaline conditions. This study revealed that employing L. Ru extract could be considered a simple, facile, and green technique in stimuli-sensitive AuNPs synthesis.

Additional information

Funding

Elite Researcher Grant Committee supported the study under award number (No. 971027) from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 674.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.