95
Views
1
CrossRef citations to date
0
Altmetric
Articles

Missing information imputation for disease-dedicated social networks with heterogeneous auxiliary data

, , &
Pages 87-98 | Published online: 30 Jan 2020
 

Abstract

Many high impact applications suffer from missing information. For example, disease-dedicated social networks provide additional resources to glimpse into patients’ daily life related to disease management. However, due to the voluntary nature of such social networks, the information reported by patients is often incomplete, making the following data analytics tasks particularly challenging. On the other hand, in addition to the target data that we aim to analyze, we may also have other related data at our disposal. For example, to analyze disease-dedicated social networks, auxiliary clinical data (with potentially non-overlapping patients), as well as the users’ online social relationship might provide additional information for estimating the missing information. Therefore, the key question we aim to answer in this paper is how we can leverage the heterogeneous auxiliary data for the sake of missing information imputation. To answer this question, we focus on diabetes-dedicated social networks, and we aim to estimate the missing information from patients’ self-reported biomarker measurements. In particular, we propose a hypergraph structure to model the relationship among users and user-generated content (posts). Based on the hypergraph structure, we further introduce an optimization framework to estimate the missing biomarker measurements using heterogeneous auxiliary data. To solve the optimization framework, we design iterative algorithms to find the local optimal solution. Experimental results on both synthetic and real data sets (including a data set collected from a diabetes-dedicated social network) demonstrate the effectiveness of the proposed algorithms.

Acknowledgement

This work is supported by National Science Foundation under Grant No. IIS-1947203 and Grant No. IIS-1813464, the U.S. Department of Homeland Security under Grant Award Number 17STQAC00001-02-00 and Ordering Agreement Number HSHQDC-16-A-B0001, and an IBM Faculty Award. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.