170
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Image decomposition-based sparse extreme pixel-level feature detection model with application to medical images

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 338-354 | Published online: 28 May 2021
 

Abstract

Pixel-level feature detection from images is an essential but challenging task encountered in domains such as detecting defects in manufacturing systems and detecting tumors in medical imaging. Often, the real image contains multiple feature types. The types with higher pixel intensities are termed as positive (extreme) features and the ones with lower pixel intensities as negative (extreme) features. For example, when planning a medical treatment, it is important to identify, (a) calcification (a pathological feature which can result in a post-surgical complications) as positive features, and (b) soft tissues (organ morphology, knowledge of which can support pre-surgical planning) as negative features, from a preoperative computed tomography image of the human heart. However, this is not an easy task because (a) conventional segmentation techniques require manual intervention and post-processing, and (b) existing automatic approaches do not distinguish positive features from negative. In this work, we propose a novel, automatic image decomposition-based sparse extreme pixel-level feature detection model to decompose an image into mean and extreme features. To estimate model parameters, a high-dimensional least squares regression with regularization and constraints is utilized. An efficient algorithm based on the alternating direction method of multipliers and the proximal gradient method is developed to solve the large-scale optimization problem. The effectiveness of the proposed model is demonstrated using synthetic tests and a real-world case study, where the model exhibits superior performance over existing methods.

Acknowledgements

The authors would like to thank Jan Vlachy for his valuable comments and suggestions.

Disclosure statement

No potential conflict of interest was provided by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.