288
Views
2
CrossRef citations to date
0
Altmetric
Brief Report

A comparison of work-rest models using a “breakpoint” analysis raises questions

ORCID Icon, & ORCID Icon
Pages 187-194 | Received 23 Dec 2019, Accepted 25 Nov 2020, Published online: 04 Feb 2021
 

OCCUPATIONAL APPLICATIONS

Designing sustainable cyclic work requires attention to both the workload amplitude as well as the duty cycle, the fraction of the work cycle with active workload, that therefore also defines the recovery phase of the cycle. A number of different approaches and models have been developed to calculate the required recovery time for a given load and duty cycle. We present a comparison of three types of models at the “breakpoint” that defines the boundary of load amplitude and duty cycle where fatigue begins to accumulate faster than recovery allows within the work cycle. This comparison shows considerable variation between models of the “allowable” load or duty cycle depending on the method used. Practitioners should thus be cautious applying these models indiscriminately in job design as their results can vary substantially. In particular, differences between the tasks used for model formulation and application may compromise validity, and model application in a given context should be verified before broad application.

TECHNICAL ABSTRACT

Rationale: There is a need for tools to help design sustainable work in which muscular capacity and other human resources can recover at least as quickly as they are used. Purpose: In this brief report, three different approaches presented in the literature to determining work-rest schedules in cyclic work are compared. Methods: First, a set of five different muscular endurance models coupled with a recovery time model were considered, both with and without a dynamic work correction factor. Second, we examined a model of “resumption time”, and third a psychophysically-based model of maximum duty cycle was included. These models were compared using the concept of a “breakpoint” in fatigue accumulation—the point at which a given load amplitude and duty cycle combination begins to cause accumulation of fatigue in each cycle and from which there is inadequate time to recover. Results: While the five endurance time models all behaved similarly, both with and without the static-to-dynamic correction factor applied, the three different types of modeling approaches provided substantially different response patterns. The psychophysically based model provided the most protective guideline among the models compared. Conclusion: These models should be applied with caution to particular work scenarios. Further research is needed to test accuracy and effectiveness when applying such models to a range of task scenarios to establish safe workloads and loading times in the design of repetitive work.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Funding

This work has been supported by the Natural Sciences and engineering Research Council of Canada (NSERC; RGPIN# 2018‐05956).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.