460
Views
6
CrossRef citations to date
0
Altmetric
Original Article

A hybrid data analytics approach for high-performance concrete compressive strength prediction

, , &
Pages 158-168 | Received 11 Nov 2019, Accepted 21 Apr 2020, Published online: 05 May 2020
 

ABSTRACT

Contrary to the popular belief cited in the literature, the proposed data analytics technique shows that multiple linear regression (MLR) can achieve as high a predictive power as some of the black box models when the necessary interventions are implemented pertaining to the regression diagnostic. Such an MLR model can be utilised to design an optimal concrete mix, as it provides the explicit and accurate relationships between the HPC components and the expected compressive strength. Moreover, the proposed study offers a decision support tool incorporating the Extreme Gradient Boosting (XGB) model to bridge the gap between black-box models and practitioners. The tool can be used to make faster, more data-driven, and accurate managerial decisions without having any expertise in the required fields, which would reduce a substantial amount of time, cost, and effort spent on measurement procedures of the compressive strength of HPC.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 187.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.