303
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous use of physical and chemical dispersants for electrical conductivity enhancement in polyamide 6/carbon nanotube/conductive carbon black hybrid nanocomposites

, , &
Pages 263-275 | Received 14 Jun 2021, Accepted 06 Sep 2021, Published online: 20 Sep 2021
 

ABSTRACT

Polyamide 6 (PA6)/carbon nanotube (CNT)/conductive carbon black (CCB) nanocomposites with the incorporation of physical and chemical dispersants were prepared via melt blending method to examine the synergistic enhancement of electrical conductivity. Investigation of modified CNT with octadecyl triphenyl phosphonium chloride (OTPC-CNT) as physical dispersant was performed by Fourier transform infrared, nuclear magnetic resonance, Raman spectroscopy, and thermogravimetric analysis. Morphological, electrical, rheological, and mechanical properties of PA6/CNT/CCB nanocomposites were examined by field emission scanning electron microscopy, transmission electron microscopy, digital insulation tester, oscillatory shear rheometer, tensile test, and impact test. The results showed that by the incorporation of physical (OTPC) and chemical (RPS 1005) dispersants to a compound containing 2.5 wt.% CNT and 5 wt.% CCB, electrical conductivity was improved 9 orders of magnitude (S cm−1) compared to those of samples without any dispersants and 6 orders of magnitude compared to those of samples containing 2.5 wt.% CNT and physical dispersants. These results illustrate that by simultaneous incorporation of two different dispersants, it is possible to form a 3D conductive network in such nanocomposites and thus achieve a synergistic enhancement of electrical conductivity. The novelty of this study lies in the simultaneous incorporation of physical and chemical dispersants that lead to desired electrical conductivity without sacrificing mechanical properties besides economical advantage of production. This result is due to the remarkable effect of physical dispersants in improving electrical conductivity along with the low cost of chemical dispersants.

GRAPHICAL ABSTRACT

Acknowledgments

Financial support of Parsa Polymer Sharif Co. from this work is greatly appreciated.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was financially supported by Parsa Polymer Sharif Co.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.