586
Views
2
CrossRef citations to date
0
Altmetric
PURE MATHEMATICS

Certain fractional integral operators pertaining to S-function

| (Reviewing editor)
Article: 1781506 | Received 19 Apr 2020, Accepted 08 Jun 2020, Published online: 25 Jun 2020

Abstract

Fractional integral operators introduced by Saxena and Kumbhat involving Fox’s H-function as kernel are applied, and find new image formulas of S-function and properties are established. Also, by implementing Euler, Whittaker and K-transforms on the resulting formulas. On account of S-function, a number of results involving special functions can be obtained merely by giving particular values for the parameters.

Subject classification:

PUBLIC INTEREST STATEMENT

The fractional calculus functions are very useful almost in all areas of applied Mathematics that provides solutions to the number of problems formulated in terms of fractional order differential, integral and difference equations; therefore, it has recently become a subject of interest for many authors in the field of fractional calculus and its applications in astrophysics, biosignal processing, fluid dynamics, non-linear control theory and stochastic dynamical system, and so on. In this paper, we have evaluated two theorems for generalized fractional integral operators involving Fox’s H-function as kernel, applied on the S-function and also point out their relevance properties and the known results.

1. Introduction and preliminaries

In recent years, the fractional calculus has become a significant instrument for the modeling analysis and assumed a significant role in different fields, for example, material science, science, mechanics, power, economy and control theory (see details: Alaria et al. (Citation2019), Berdnikov and Lokhin (Citation2019), Drapaca (Citation2018), and Hammachukiattikul (Citation2019)). In addition, a number of researchers like (Agarwal and Jain (Citation2011), Baleanu (Citation2009), Kalla (Citation1969), and Kilbas (Citation2005)) have studied in-depth level of properties, applications and diverse extensions of a range of operators of fractional calculus. Also, on other analogous topics is very active and extensive around the world. One may refer to the research monographs Kiryakova (Citation1994) and Miller and Ross (Citation1993), and the recent papers Kilbas et al. (Citation2006), Mathai et al. (Citation2010), Samko et al. (Citation1993), and Suthar and Amsalu (Citation2019). Recently, Saxena and Daiya (Citation2015) defined and study a special function called as S-function, its relation with other special functions, which is a generalization of k-Mittag-Leffler function, K-function, M-series, Mittag-Leffler function and other many special functions. These special functions have recently found essential applications in solving problems in applied sciences, biology, physics and engineering. The S-function is defined for ρ,δ,ω,τC, (ρ)>0, k, (ρ)>k(τ), li(i=1,2,3,,p), mj(j=1,2,3,,q), and p<q+1 as

(1.1) S(p,q)ρ,δ,ω,τ,kl1,l2,,lp;m1,m2,,mq;x=n=0l1nlpnωnτ,km1nmqnΓknρ+δxnn!.(1.1)

Here, k-Pochhammer symbol

(1.2) ςn,k=Γkς+nkΓkς,k,ςC/0ςς+kς+(n1)k,nN,ςC(1.2)

and the k-gamma function

(1.3) Γkς=kςk1Γςk,(1.3)

where ςC,k and nN, introduced by Daz and Pariguan (Citation2007) (see also; Romero and Cerutti (Citation2012)).

Some important special cases of S-function are enumerated below:

(i) For p=q=0, the generalized k-Mittag-Leffler function from Saxena et al. (Citation2014):

Ek,ρ,δω,τ(x)=S(0,0)ρ,δ,ω,τ,k;;x=n=0ωnτ,kΓknρ+δxnn!,ρ/kτ>pq.

(ii) Again, for k=τ=1, the S-function is the generalized K-function, defined by Sharma (Citation2011):

K(p,q)ρ,δ,ωl1,,lp;m1,,mq;x=S(p,q)ρ,δ,ω,1,1l1,,lp;m1,,mq;x
=n=0l1nlpnωnm1nmqnΓnρ+δxnn!,(ρ)>pq.

(iii) For τ=k=ω=1, the S-function reduced to generalized M-series defined by Sharma and Jain (Citation2009):

M(p,q)ρ,δl1,,lp;m1,,mq;x=S(p,q)ρ,δ,1,1,1l1,,lp;m1,,mq;x
=n=0l1nlpnm1nmqnΓnρ+δxnn!,(ρ)>pq1.

Now, we recall the Saxena and Kumbhat (Citation1974) operators involving Fox’s H-function as kernel, by means of the following equations:

(1.4) Rx,γη,σ[f(x)]=γxηγσ10xtη(xγtγ)σHc,dm,n[λU|(ac,Ac)(bd,Bd)]f(t)dt,(1.4)
(1.5) Kx,γε,σ[f(x)]=γxεxtεγσ1(tγxγ)σHc,dm,n[λV|(ac,Ac)(bd,Bd)]f(t)dt,(1.5)

where U and V represent the expressions

tγxγξ1tγxγυ

and

xγtγξ1xγtγυ

respectively with ξ,υ>0. The sufficient conditions of above said operators are given below:

(1) 1c,d<,c1+d1=1;

(2) η+γξbj/Bj>d1;σ+γυbj/Bj>d1;

ε+σ+γξbj/Bj>c1(j=1,,m);

(3) f(x)LP0,;

(4) argλ<θπ2,θ>0,

where θ=j=1mBjj=m+1dBj+j=1nAjj=n+1cAj>0.

where, Fox H-function Fox (Citation1961), in operator (1.4) and (1.5) defined in terms of Mellin-Barnes type contour integral as:

(1.6) Hc,dm,n(z)=Hc,dm,n[z|(ac,Ac)(bd,Bd)]=12πiL(ϕ)zϕdϕ,(1.6)

where

s=j=1mΓbj+Bjϕi=1nΓ1aiAiϕi=n+1cΓai+Aiϕj=m+1dΓ1bjBjϕ,

Here, m,n,c,dN0 with 1md,0nc, ai,bj or C, Ai,Bj+, i=1,2,,c; j=1,2,,d

For the convergence conditions together with the conditions of analytical continuations of H-function, one can see Mathai and Saxena (Citation1978) and Mathai et al. (Citation2010). Throughout this paper, we assume that the above conditions are fulfilled by the said function.

The Euler transform (Sneddon (Citation1979)) of a function f(z) is defined as:

(1.7) Bf(z);g,h=01zg11zh1fzdz,g,hC,h>0,g>0.(1.7)

Due to Whittaker transform (Whittaker and Watson (Citation1996)), the following result true:

(1.8) 0et2tζ1Wχ,θtdt=Γ1/2+θ+ζΓ1/2θ+ζΓ1χ+ζ,(1.8)

where θ±ζ>1/2 and Wχ,θt is the Whittaker confluent hypergeometric function

(1.9) Wχ,ζz=Γ2θΓ1/2χθMχ,θz+Γ2θΓ1/2+χ+θMχ,θz,(1.9)

where Mχ,θz is defined by

Mχ,θz=z1/2+θe1/2z1F11/2+θτ;2θ+1;z.

The following integral equation defined in term of K-transform (Erdélyi et al. (Citation1954)) as:

υfx;h=gh;υ=0hx1/2Kυhxfxdx,

where h>0;Kυx is the Bessel function of the second kind defined by (Srivastava et al. (Citation1982), p. 332)

Kυz=π2z1/2W0,υ2z,

where W0,υ. is the Whittaker function defined in Equationequation (1.9).

(1.10) 0tμ1Kυaxdx=2μ2aμΓμ±υ/2;a>0;μ±υ>0.(1.10)

The above result given in (Mathai et al. (Citation2010), pp. 54, Eq. 2.37) will be used in evaluating the integrals.

In see of the effectiveness and extraordinary significance of the fractional integral operators given by Saxena and Kumbhat in specific issues, the authors establish the image formulas and derive certain properties of S-function. The results obtained here involve special functions like k-Mittag-Leffler function, K-function and M-series, due to their general nature and usefulness in the theory of integral operators and relevant part of computational mathematics.

2. Images of S-function under the fractional integral operators

In this part, we obtain the images of S-function under the generalized fractional integral operators defined in 1.4 and 1.5.

Theorem 1. Let ρ,δ,ω,τC, (ρ)>0, ϑ>0, k, (ρ)>k(τ), x>0, the fractional integration Rx,γη,σ of S-function exists, under the condition c1+d1=1; η+γξbj/Bj>d1; σ+γυbj/Bj>d1;(j=1,,m). Then there holds the result:

Rx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktv(x)
=xϑ1k1δ/k1Γω/kn=0l1n,,lpnm1n,,mqnkτρ/kxνnn!
(2.1) ×Γ((ω/k)+nτ)Γ((nρ/k)+(δ/k))Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ηϑvn1)/γ,ξ),(σ,υ)(σ(η+ϑ+vn+1)/γ,ξ+υ),(bd,Bd)].(2.1)

Proof. Let be the left-hand side of (2.1), using (1.1) and (1.4), we have

=γxηγσ10xtη+ϑ1xγtγσ
×12πiLϕλUϕdϕn=0l1nlpnωnτ,km1nmqnΓknρ+δtνnn!,
Now, changing the order of the integration valid under the condition given with the theorem statement, we obtain
=γxηγσ1n=0l1n,,lpnm1n,,mqnωnτ,kΓknρ+δn!12πiLϕλϕ
(2.2) ×xγσγξϕ0xtη+ϑ+vn+γξϕ11t/xγσ+υϕdtdϕ,(2.2)
Further, the substitution tγ/xγ=z, then t=xz1/γ in above term, we get
=xϑ1n=0l1n,,lpnm1n,,mqnωnτ,kΓknρ+δn!xvn2πiLϕλϕ
(2.3) ×01zη+ϑ+vn+γξϕ/γ11zσ+υϕdzdϕ,(2.3)

Applying Beta function for (2.3), the inner integral becomes

=xϑ1n=0l1n,,lpnm1n,,mqnωnτ,kxνnΓknρ+δn!
(2.4) ×12πiLϕλϕΓη+ϑ+vn/γ+ξϕΓσ+1+υϕΓη+ϑ+vn/γ+σ+1+(ξ+υ)ϕdϕ,(2.4)

Interpreting the right-hand side of (2.4), in view of the definition H-function under (1.2), (1.3) and (1.6), we reached at the desired result (2.1).

Theorem 2. Let ρ,δ,ω,τC, (ρ)>0, ϑ<1, k, (ρ)>k(τ), x>0, the fractional integration Kx,γε,σ of S-function exists, under the condition c1+d1=1; η+γξbj/Bj>d1; ε+σ+γξbj/Bj>c1; (j=1,,m). Then there holds the result:

Kx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktv(x)
=xϑk1δ/k1Γω/kn=0l1n,,lpnm1n,,mqnkτρ/kxνnn!
(2.5) ×Γ((ω/k)+nτ)Γ((nρ/k)+(δ/k))Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ε+ϑ+vn)/γ,ξ),(σ,υ)(σ(ε+ϑ+vn)/γ,ξ+υ),(bd,Bd)].(2.5)

Proof. Assume be the left-hand side of (2.5), using (1.1) and (1.5), we have

=γxεxtεϑγσ1tγxγσ
×12πiLϕλVϕdϕn=0l1nlpnωnτ,km1nmqnΓknρ+δtνnn!,

Changing the order of the integration under the valid condition provided in the theorem statement, we get

=γxεn=0l1nlpnωnτ,km1nmqnΓknρ+δn!12πiLϕλϕ
×xγξϕxtεϑvn+γξϕ11x/tγσυϕdtdϕ,

Let the substitution xγ/tγ=u, then t=x/u1/γ in above term and applying beta function, we get

=xϑn=0l1nlpnωnτ,kxvnm1nmqnΓknρ+δn!
(2.6) ×12πiLϕλϕΓε+ϑ+vn/γξϕΓσ+1υϕΓε+ϑ+vn/γ+σ+1(ξ+υ)ϕdϕ,(2.6)

Interpreting the right-hand side of (2.6), in view of the definition (1.2), (1.3) and (1.6), we arrive at the result (2.5).

3. Special cases

(i) If we put p=q=0, in Theorem 1 and Theorem 2, then we find the following interesting results on the right which are known as generalized k-Mittag-Leffler function.

Corollary 1. EquationEq. (2.1) reduces in the following form:

Rx,γη,σtϑ1S(0,0)ρ,δ,ω,τ,ktv(x)
×Γ((ω/k)+nτ)Γ((nρ/k)+(δ/k))Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ηϑvn1)/γ,ξ),(σ,υ)(σ(ηϑvn1)/γ,ξ+υ),(bd,Bd)].

Corollary 2. EquationEq. (2.5) reduces in the following form:

Kx,γε,σtϑS(0,0)ρ,δ,ω,τ,ktv(x)
=xϑEk,ρ,δω,τ(xv)Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ε+ϑ+vn)/γ,ξ),(σ,υ)(σ(ε+ϑ+vn)/γ,ξ+υ),(bd,Bd)].

(ii) For putting k=τ=1 in Theorem 1 and Theorem 2, then we get the following interesting results on the right is known as K-function.

Corollary 3. EquationEq.(2.1) reduces in the following form:

Rx,γη,σtϑ1S(p,q)ρ,δ,ω,1,1tv(x)
=xϑ1Kp,qρ,δ,ω(xv)Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ηϑvn1)/γ,ξ),(σ,υ)(σ(η+ϑ+vn+1)/γ,ξ+υ),(bd,Bd)].

Corollary 4. EquationEq.(2.5) reduces in the following form:

Kx,γε,σtϑS(p,q)ρ,δ,ω,1,1tv(x)
=xϑKp,qρ,δ,ω(xv)Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ε+ϑ+vn)/γ,ξ),(σ,υ)(σ(ε+ϑ+vn)/γ,ξ+υ),(bd,Bd)].

(iii) For taking τ=k=ω=1 in Theorem 1 and Theorem 2, then we obtain the following results on the right is known as M-series.

Corollary 5. EquationEq.(2.1) reduces in the following form:

Rx,γη,σtϑ1S(p,q)ρ,δ,1,1,1tv(x)
=xϑ1Mp,qρ,δ(xv)Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ηϑvn1)/γ,ξ),(σ,υ)(σ(ηϑvn1)/γ,ξ+υ),(bd,Bd)].

Corollary 6. EquationEq.(2.5) reduces in the following form:

Kx,γε,σtϑS(p,q)ρ,δ,1,1,1tv(x)
=xϑMp,qρ,δ(xv)Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ε+ϑ+vn)/γ,ξ),(σ,υ)(σ(ε+ϑ+vn)/γ,ξ+υ),(bd,Bd)].

4. Integral transforms of S-function involving fractional integral operators

In this part, the results established in Theorems 1 and Theorems 2 have been obtained in terms of Euler, Whittaker and K-transforms.

Theorem 3. Let ρ,δ,ω,τC, (ρ)>0, ϑ>0, k, (ρ)>k(τ), x>0, c1+d1=1; η+γξbj/Bj>d1;σ+γυbj/Bj>d1; (j=1,,m). Then

BRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktv;g,h
=Γhn=0l1nlpnωnτ,km1nmqnΓknρ+δn!Γg+ϑ1+νnΓg+h+ϑ1+νn
(4.1) Hc+2,d+1m,n+2[λ|(ac,Ac),(1(ηϑvn1)/γ,ξ),(σ,υ)(σ(ηϑvn1)/γ,ξ+υ),(bd,Bd)].(4.1)

Proof. Using (2.1) and (1.7), it gives

BRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktv;g,h=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right]
×01zg+ϑ+νn111zh1dz,
=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!Γg+ϑ+νn1ΓhΓg+h+ϑ+νn1
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right],

Now, we get the result (4.1).

Theorem 4. Let ρ,δ,ω,τC, (ρ)>0, ϑ<1, k, (ρ)>k(τ), x>0, c1+d1=1; η+γξbj/Bj>d1;ε+σ+γξbj/Bj>c1; (j=1,,m). Then

BKx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktv(x);g,h
=Γhn=0l1nlpnωnτ,km1nmqnΓknρ+δn!ΓgϑνnΓg+hϑνn
(4.2) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),{\kern 1pt} \left({1 - \left({\varepsilon + \vartheta + vn} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\varepsilon + \vartheta + vn} \right)/\gamma,{\kern 1pt} \xi + \upsilon } \right),\left({{b_d},{B_d}} \right)} \cr } } \right].(4.2)

Proof. In similar method of proof of Theorem 3, we get the result (4.2).

Theorem 5. Follow stated Theorem 1 for conditions on parameters, along with θ± ϑ+ζ+vn1>1/2. Then the subsequent result true:

0eφt/2tζ1Wχ,θφtRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktvdt
=φ1ϑζn=0l1nlpnωnτ,kφvm1nmqnΓknρ+δn!
×Γθ+ϑ+ζ+vn1/2Γϑθ+ζ+vn1/2Γϑχ+ζ+vn
(4.3) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),\left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right].(4.3)

Proof. Using (2.1) and (1.8), it gives

=n=0l1nlpnωnτ,kφvm1nmqnΓknρ+δn!
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right]
×0eφt/2tϑ+ζ+vn11Wχ,θφtdt,

Assume that φt=k, dt=dk/φ, we get

=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right]
(4.4) ×φ1ϑζvn0ek/2kϑ+ζ+vn11Wχ,θkdk,(4.4)

Interpreting the right-hand side of (4.4), in view of H-function (1.8), we arrive at the result (4.3).

Theorem 6. Follow stated Theorem 2 for conditions on parameters, along with θ± ϑ+ζvn1>1/2. Then the subsequent result true:

0eφt/2tζ1Wχ,θφtKx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktvdt
=φϑζn=0l1nlpnωnτ,kφvm1nmqnΓknρ+δn!
×Γθϑ+ζvn+1/2Γϑθ+ζvn+1/2Γ1ϑχ+ζvn
(4.5) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),{\kern 1pt} \left({1 - \left({\varepsilon + \vartheta + vn} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\varepsilon + \vartheta + vn} \right)/\gamma,{\kern 1pt} \xi + \upsilon } \right),\left({{b_d},{B_d}} \right)} \cr } } \right].(4.5)

Proof. In same direction, proof of Theorem 5, we get the result (4.5).

Theorem 7. Follow stated Theorem 1 for conditions on parameters, with r>0;μ+ϑ+vn1±υ>0. Then the subsequent result true:

0tμ1KυrtRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktvdt
=2μ+ϑ3r1μϑn=0l1nlpnωnτ,km1nmqnΓknρ+δn!Γμ+ϑ+vn1±υ2
(4.6) \times {\left({r/2} \right)^\nu }{\kern 1pt} H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right].(4.6)

Proof. Using (2.1) and (1.10), it gives

=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right]
×0tμ+ϑ+vn11Kυrtdt,

we get

=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!
\times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),\left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right]
(4.7) ×2μ+ϑ+vn3r1μϑvnΓμ+ϑ+vn1±υ2,(4.7)

simplification on right-hand side of (4.7), we obtain at the result (4.6).

Theorem 8. Follow stated Theorem 2 for conditions on parameters, along with r>0;μϑvn±υ>0. Then the subsequent result true:

0tμ1KυrtKx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktvdt
=2μϑ2rϑμn=0l1nlpnωnτ,km1nmqnΓknρ+δn!Γμϑvn±υ2
(4.8) \times {\left({r/2} \right)^\nu }H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),{\kern 1pt} \left({1 - \left({\varepsilon + \vartheta + vn} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\varepsilon + \vartheta + vn} \right)/\gamma,{\kern 1pt} \xi + \upsilon } \right),\left({{b_d},{B_d}} \right)} \cr } } \right].(4.8)

Proof. According to the solution of Theorem 7, we get the result (4.8).

5. Properties of integral operators

Here, we established some properties of the operators concerning with Theorem 1 and Theorem 2. These properties are given in the compositions of power function.

Theorem 9: Given conditions in Theorem 1 with β+ϑ>0. Then the subsequent result holds true:

(5.1) xβRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktv(x)=Rx,γηβ,σtβ+ϑ1S(p,q)ρ,δ,ω,τ,ktv(x).(5.1)

Proof. From (2.1), the left hand side of EquationEq. (5.1), we have

xβRx,γη,σtϑ1S(p,q)ρ,δ,ω,τ,ktv(x)=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!xϑ+β+νn1
(5.2) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right],(5.2)

again by (2.1), the right hand of (5.1) follows as

Rx,γηβ,σtβ+ϑ1S(p,q)ρ,δ,ω,τ,ktv(x)=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!xϑ+β+νn1
(5.3) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{\kern 1pt} {A_c}} \right),\left({1 - \left({\eta - \vartheta - vn - 1} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\eta + \vartheta + vn + 1} \right)/\gamma,\xi + \upsilon } \right),{\kern 1pt} \left({{b_d},{\kern 1pt} {B_d}} \right)} \cr } } \right],(5.3)

It seems that Theorem (5.1) readily follow due to (5.2) and (5.3).

Theorem 10: Given conditions in Theorem 2 with β+ϑ>0. Then the subsequent result holds true:

(5.4) xβKx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktv(x)=Kx,γεβ,σtϑβS(p,q)ρ,δ,ω,τ,ktv(x).(5.4)

Proof. From (2.2), the left hand side of Equationeq. (5.4), we have

xβKx,γε,σtϑS(p,q)ρ,δ,ω,τ,ktv(x)=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!xβϑνn
(5.5) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),{\kern 1pt} \left({1 - \left({\varepsilon + \vartheta + vn} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\varepsilon + \vartheta + vn} \right)/\gamma,{\kern 1pt} \xi + \upsilon } \right),\left({{b_d},{B_d}} \right)} \cr } } \right],(5.5)

again by (2.2), the right hand of (5.4) follows as

Kx,γεβ,σtϑβS(p,q)ρ,δ,ω,τ,ktv(x)=n=0l1nlpnωnτ,km1nmqnΓknρ+δn!xβϑνn
(5.6) \times H_{c + 2,d + 1}^{m,n + 2}\left[{\left. {\mathop {\mathop \lambda \limits_ }\limits_ } \right|\matrix{ {\left({{a_c},{A_c}} \right),{\kern 1pt} \left({1 - \left({\varepsilon + \vartheta + vn} \right)/\gamma,\xi } \right),\left({ - \sigma,\upsilon } \right)} \cr {\left({ - \sigma - \left({\varepsilon + \vartheta + vn} \right)/\gamma,{\kern 1pt} \xi + \upsilon } \right),\left({{b_d},{B_d}} \right)} \cr } } \right],(5.6)

It seems that Theorem (5.4) readily follow due to (5.5) and (5.6).

6. Conclusions

In the present paper, we have studied the properties of S-function under the extension of generalized fractional integral operators given by Saxena and Kumbhat and developed some new images. The results obtained here involve special functions like k-Mittag-Leffler function, K-function and M-series, due to their general nature and usefulness in the theory of integral operators and relevant part of computational mathematics. They may have an important place in the literature (see, e.g., Amsalu and Suthar (Citation2018), Purohit et al. (Citation2011), Purohit et al. (Citation2010), Saxena et al. (Citation2009), Suthar and Habenom (Citation2017), and Suthar et al. (Citation2018)). Also, the special functions involved here can be reduced in simpler functions, those have a variety of applications in different domains of science and technology and can be observed as special cases, those we have not mentioned here explicitly.

Acknowledgements

The author is thankful to the referees for their valuable remarks and comments for the improvement of the paper.

Additional information

Funding

The Author received no direct funding for this research.

Notes on contributors

D. L. Suthar

D.L. Suthar is Associate Professor of Mathematics, Department of Mathematics, at Wollo University, Ethiopia. His research interest includes Special functions, Fractional calculus, Integral transforms, Basic Hypergeometric series, Geometric function theory and Mathematical physics. He has published more than 105 international and national research papers. He is life member of the Indian Science Congress Association, Society for Special Function and Their Application, Indian Mathematical Society and many other organizations. He is an author of three books related to Engineering Mathematics discipline.

References

  • Agarwal, P., & Jain, S. (2011). Further results on fractional calculus of Srivastava polynomials. Bulletin of Mathematical Analysis and Applications, 30(2), 167–13.
  • Alaria, A., Khan, A. M., Suthar, D. L., & kumar, D. (2019). Application of fractional operators in modelling for charge carrier transport in amorphous semiconductor with multiple trapping. International Journal of Applied and Computational Mathematics, 50(6). Paper No. 167, 10. https://doi.org/10.1007/s40819-019-0750-8.
  • Amsalu, H., & Suthar, D. L. (2018). Generalized fractional integral operators involving Mittag-Leffler function. abstract and Applied Analysis, 8. pages Art. ID 7034124. https://doi.org/10.1155/2018/7034124
  • Baleanu, D. (2009). About fractional quantization and fractional variational principles. Communications in Nonlinear Science and Numerical Simulations, 140(6), 2520–2523. https://doi.org/10.1016/j.cnsns.2008.10.002
  • Berdnikov, V., & Lokhin, V. (2019). Synthesis of guaranteed stability regions of a nonstationary nonlinear system with a fuzzy controller. Civil Engineering Journal, 50(1). https://doi.org/10.28991/cej-2019-03091229
  • Diaz, R., & Pariguan, E. (2007). On hypergeometric functions and Pochhammer k-symbol. Divulg Mat, 150(2), 0179–192.
  • Drapaca, C. S. (2018). Mathematical modeling of a brain-on-chip: A study of the neuronal nitric oxide role in cerebral microaneurysms. Emerging Science Journal, 20(6). https://doi.org/10.28991/esj-2018-01156
  • Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1954). Higher transcendental functions (Vol. 2). McGraw-Hill.
  • Fox, C. (1961). The G and H functions as symmetrical Fourier kernels. Transactions of the American Mathematical Society, 98, 395–429. https://doi.org/10.2307/1993339
  • Hammachukiattikul, P. (2019). Finite-time stability, dissipativity and passivity analysis of discrete-time neural networks time-varying delays. Emerging Science Journal, 30(6). https://doi.org/10.28991/esj-2019-01198
  • Kalla, S. L. (1969). Integral operators involving Fox’s H-function. Acta Mexicana de Ciencia y Tecnología, 3, 117–122.
  • Kilbas, A. A. (2005). Fractional calculus of the generalized Wright function. Fractional Calculus and Applied Analysis, 80(2), 113–126.
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V.
  • Kiryakova, V. (1994). Generalized fractional calculus and applications, volume 301 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc.
  • Mathai, A. M., & Saxena, R. K. (1978). The H-function with applications in statistics and other disciplines. Halsted Press [John Wiley & Sons].
  • Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2010). The H-function: Theory and applications. Springer. https://doi.org/10.1007/978-1-4419-0916-9
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication. John Wiley & Sons, Inc.
  • Purohit, S. D., Kalla, S. L., & Suthar, D. L. (2011). Fractional integral operators and the multiindex Mittag-Leffler functions. Science Series A Mathematical Sciences (N.S.), 21, 87–96.
  • Purohit, S. D., Suthar, D. L., & Kalla, S. L. (2010). Some results on fractional calculus operators associated with the M -function. Hadronic Journal, 330(3), 225–235.
  • Romero, L. G., & Cerutti, R. A. (2012). Fractional Fourier transform and special k-functions. International Journal of Contemporary Mathematical Sciences, 70(13–16), 693–704.
  • Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives. Gordon and Breach Science Publishers.
  • Saxena, R. K., & Daiya, J. (2015). Integral transforms of the S-functions. Matematiche (Catania), 700(2), 147–159. https://doi.org/10.4418/2015.70.2.10
  • Saxena, R. K., Daiya, J., & Singh, A. (2014). Integral transforms of the k-generalized Mittag-Leffler function. Matematiche (Catania), 690(2), 7–16. https://doi.org/10.4418/2014.69.2.2
  • Saxena, R. K., & Kumbhat, R. K. (1974). Integral operators involving H-function. Indian Journal of Pure and Applied Mathematics, 5, 1–6.
  • Saxena, R. K., Ram, J., & Suthar, D. L. (2009). Fractional calculus of generalized Mittag-Leffler functions. The Journal of the Indian Academy of Mathematics, 31(1), 165–172.
  • Sharma, K. (2011). Application of fractional calculus operators to related area. General Mathematics Notes, 70(1), 33–40.
  • Sharma, M., & Jain, R. (2009). A note on a generalized M-series as a special function of fractional calculus. Fractional Calculus and Applied Analysis, 12(4), 449–452.
  • Sneddon, I. N. (1979). The use of integral transform. Tata McGraw Hill.
  • Srivastava, H. M., Gupta, K. C., & Goyal, S. P. (1982). The H-functions of one and two variables. South Asian Publishers Pvt. Ltd.
  • Suthar, D. L., & Amsalu, H. (2019). Fractional integral and derivative formulas by using Marichev-Saigo-Maeda operators involving the S-function. Abstract and Applied Analysis, 19. pages Art. ID 6487687. https://doi.org/10.1155/2019/6487687
  • Suthar, D. L., & Habenom, H. (2017). Marichev-Saigo integral operators involving the product of K-function and multivariable polynomials. Communications in Numerical Analysis, 2017(2), 101–108. https://doi.org/10.5899/2017/cna-00314 Art. ID cna–00314
  • Suthar, D. L., Habenom, H., & Tadesse, H. (2018). Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials. International Journal of Applied and Computational Mathematics, 40(1), 12. https://doi.org/10.1007/s40819-017-0457-7 Paper No. 34
  • Whittaker, E. T., & Watson, G. N. (1996). A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press. https://doi.org/10.1017/CBO9780511608759