1,674
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Septic B-spline collocation method for numerical solution of the coupled Burgers’ equations

, ORCID Icon, &
Pages 331-341 | Received 10 Jun 2018, Accepted 22 May 2019, Published online: 27 Jun 2019

Abstract

In this paper, a numerical solution of the coupled Burgers' equations based on septic B-spline collocation method is presented. The scheme is based on the Crank–Nicolson formulation for time integration and septic B-spline functions for space integration. The method has been showed unconditionally stable by using Von-Neumann technique. The efficiency of this method is demonstrated by applying two test problems. The obtained numerical results are found in a good agreement with the exact solution. This method is efficient, powerful, and economical. It can also applicable to other linear and nonlinear partial differential equations.

1. Introduction

The coupled Burger equations originally derived by Esipov to study the model of polydisperse sedimentation (Esipov, Citation1995). It's a simple model of sedimentation or evolution of scaled volume concentrations of two kinds of particles in fluid suspensions and colloids, under the effect of gravity (Nee and Duan, Citation1998).

The study of Burger equations have an important tasks for the system describes various kinds of physical phenomena, such as a mathematical model of turbulence, traffic, and the approximate theory of flow through a shock wave travelling in viscous fluid (Burger, Citation1948; Cole, Citation1951). Therefore many techniques have been proposed to obtain analytical and numerical solutions for one dimensional coupled Burgers equations, for example, a modified extended tanh-function method (Soliman, Citation2006), adomian decomposition method (Kaya, Citation2001), variational iteration method (Abdou and Soliman, Citation2005), and a conjugate filter approach (Wei and Gu, Citation2002). Esipov has gave numerical solutions and comparisons (Esipov, Citation1995). The Fourier pseudo-spectral method (Rashid and Ismail, Citation2009), Chebyshev spectral collocation method (Khater et al., Citation2008), adomin-pade technique (Deghan et al., Citation2007), fully implicit and Crank-Nicolson schemes (Srivastava et al, Citation2013; Srivastava et al, Citation2013). Implicit logarithmic finite-difference method (Srivastava et al, Citation2014), and collocation of local radial basis functions (Islam et al., Citation2012). For more about Burgers' equation see (Bonkile et al., Citation2018; Lashkarian et al., Citation2019; Pana et al., Citation2018; Prakasha et al., Citation2015; Shi et al., Citation2017; Wang and Kara, Citation2018; Karakoc et al., Citation2014).

Spline functions theory is very active field of approximate theory in partial differential equations. Many researchers have proposed numerical solution for the nonlinear equations including Burger equations, such as, Galerkin B-Spline-collocation method (Bryan et al., Citation2017), exponential cubic B-spline differential quadrature method (Korkmaz and Akmaz, Citation2015), trigonometric cubic B-spline differential quadrature method (Korkmaz and Akmaz, Citation2018), cubic B-spline collocation method (Sharifi and Rashidinia, Citation2016), B-spline collocation and self-adapting differential evolution (jDE) algorithm (Luo et al., Citation2018), fourth-order cubic B-spline collocation method (Rohila and Mittal, Citation2018), cubic B-spline collocation scheme (Mittal and Arora, Citation2011), non-polynomial spline method (Ali et al., Citation2015), collocation method with cubic trigonometric B-spline (Raslan et al., Citation2016), collocation method with quintic B-spline method (Raslan et al., Citation2017), generalized differential quadrature method (Mokhtari et al., Citation2011), exponential cubic B-spline finite element method (Ersoy and Dag, Citation2015), B-spline Differential Quadrature Method (Bashan et al., Citation2015), and the Galerkin quadratic B-spline finite element method (Kutluay and Ucar, Citation2013). The septic B-spline approach has been used to establish approximate solutions for several partial differential equations (Ramadan et al., Citation2005; El-Danaf, Citation2008; Soliman and Hussien, Citation2005; Quarteroni et al., Citation2007; Karakoc and Zeybek, Citation2016; Geyikli and Karakoc, Citation2011).

The organization of this paper is as follows. In Section 2, septic B-spline collocation method is described. In Section 3 and 4, the collocation method is explained and applied to the coupled Burger equations. In Section 5, the stability analysis of the method is discussed. In Section 6, two numerical test problems is presented and discussed. Section 7 concludes the paper.

2. Septic B-spline collocation method

Consider a mesh a=x0x1x2xn=b as a uniform partition of the solution domain axb, with h=xjxj1,      j=1,2,,,,,N. The septic B-spline basis functions Bj(x)at knots xj given as below: (1) Bj(x)=1h7{(xxj4)7,                                                                                                                                                                                                                                      x    [xj4,xj3],(xxj4)78(xxj3)7,                                                                                                                                                                  x[xj3,xj2],(xxj4)78(xxj3)7+28(xxj2)7,                                                                                     x[xj2,xj1],(xxj4)78(xxj3)7+28(xxj2)756(xxj1)7,                  x[xj1,xj],(xj+4x)78(xj+3x)7+28(xj+2x)756(xj+1x)7,                 x[xj,xj+1],(xj+4x)78(xj+3x)7+28(xj+2x)7                                                                                      x[xj+1,xj+2],(xj+4x)78(xj+3x)7,                                                                                                                                                                 x[xj+2,xj+3],(xj+4x)7,                                                                                                                                                                                                                                     x[xj+2,xj+3],     0,(1) where {B3,B2,B1,B0,B1,,BN+1,BN+2,BN+3} forms a basis over the region [a,b]. Each septic B-spline covers eight elements so that an element is covered by eight septic B-splines.

3. Solution of coupled burger equations

The coupled Burger equations is given by (2) utuxx+k1uux+k2(uv)x=0,(2) (3) vtvxx+k1vvx+k3(vu)x=0,                                                                  x[a,b],    t[0,T](3) with the boundary conditions: (4) u(a,t)=α1,       u(b,t)=α2,                       v(a,t)=β1,        v(b,t)=β2,            vx(a,t)=0,       vx(b,t)=0,ux(a,t)=0,        ux(b,t)=0,                                                                                         axb,        0tT                             (4) and initial conditions: (5) v(x,0)=f(x),u(x,0)=g(x),                                                                                                                                         x[a,b](5)

To apply the proposed method, the time derivative was discretized by forward finite difference approximation and using Crank-Nicolson approach to Equationequations (2) and Equation(3), which obtained: (6) un+1unk(uxxn+1+uxxn2)+k1((uux)n+1+(uux)n2)+k2(uvx)n+1+(uvx)n2+k2(vux)n+1+(vux)n2=0,                 (6) (7) vn+1vnk(vxxn+1+vxxn2)+k1((vvx)n+1+(vvx)n2)+k3(vux)n+1+(vux)n2+k3(uvx)n+1+(uvx)n2=0,        (7) where k=Δt, is the time step. The nonlinear terms in Equationequations (6) and Equation(7) are linearized using the form given by Rubin and Graves ((Rubin and Graves, Citation1975). Then the nonlinear terms are approximated as the below: (8) (uux)n+1=unuxn+1+un+1uxnunuxn,(uvx)n+1=unvxn+1+un+1vxnunvxn,(vux)n+1=vnuxn+1+vn+1uxnvnuxn,(8) by approximating u(x,t) and v(x,t) by using septic B-spline functions Bj(x) and the time dependent parameters δj(t) and σj(t), for U(x,t) and V(x,t) respectively, so the approximate solution written as: (9) UN(x,t)=j=3N+3δj(t)Bj(x),VN(x,t)=j=3N+3σj(t)Bj(x),(9) using approximate function (9) and septic B-spline functions (1), the approximate values at the knots of U(x),V(x) and their derivatives up to second order are determined in terms of the time parameters δj(t) and σj(t) respectively, as: (10) Uj=U(xj)=δj3+120δj2+1191δj1+2416δj+1191δj+1+120δj+2+δj+3,Uj=U(xj)=7h(δj356δj2245δj1+245δj+1+56δj+2+δj+3),Uj=U(xj)=42h2(δj3+24δj2+15δj180δj+15δj+1+24δj+2+δj+3),Vj=V(xj)=σj3+120σj2+1191σj1+2416σj+1191σj+1+120σj+2+σj+3,Vj=V(xj)=7h(σj356σj2245σj1+245σj+1+56σj+2+σj+3),Vj=V(xj)=42h2(σj3+24σj2+15σj180σj+15σj+1+24σj+2+σj+3),(10) by substituting the approximate solution for U,V and its derivatives from Equationequations (10), Equationequations (6) and Equation(7) yields the following difference equations with the unknowns δj(t) and σj(t): (11) A1δj3n+1+A2δj2n+1+A3δj1n+1+A4δjn+1+A5δj+1n+1+A6δj+2n+1+A7δj+3n+1+A8σj3n+1+A9σj2n+1+A10σj1n+1+A11σjn+1+A12σj+1n+1+A13σj+2n+1+A14σj+3n+1=A15δj3n+A16δj2n+A17δj1n+A18δjn+A17δj+1n+A16δj+2n+A15δj+3n,(11) (12) B1σj3n+1+B2σj2n+1+B3σj1n+1+B4σjn+1+B5σj+1n+1+B6σj+2n+1+B7σj+3n+1+B8δj3n+1+B9δj2n+1+B10δj1n+1+B11δjn+1+B12δj+1n+1+B13δj+2n+1+B14δj+3n+1=B15σj3n+B16σj2n+B17σj1n+B18σjn+B17σj+1n+B16σj+2n+B15σj+3n,(12) where A1=121kh27kk12hz1+7kk12hz2+7kk22hz37kk22hz4,A2=120504kh2392kk12hz1+840kk12hz2+840kk22hz3196kk22hz4,A3=1191315kh21715kk12hz1+8337kk12hz2+8337kk22hz31715kk22hz4,A4=2416+1680kh2+16912kk12hz2+16912kk22hz3,A5=1191315kh2+1715kk12hz1+8337kk12hz2+8337kk22hz3+1715kk22hz4,A6=120504kh2+392kk12hz1+840kk12hz2+840kk22hz3+196kk22hz4, A7=121kh2+7kk12hz1+7kk12hz2+7kk22hz3+7kk22hz4,A8=7kk22hz1+7kk22hz2,A9=196kk22hz1+840kk22hz2, A10=1715kk22hz1+8337kk22hz2,A11=16912kk22hz2,A12=1715kk22hz1+8337kk22hz2,A13=196kk2hz1+840kk22hz2,A14=7kk22hz1+7kk22hz2,A15=1+42k2h2,A16=120+504kh2,A17=1191+315kh2,A18=24161680kh2, B1=121kh27kk12hz4+7kk12hz3+7kk32hz27kk32hz1,B2=120504kh2392kk12hz4+840kk12hz3+840kk32hz2196kk32hz1,B3=1191315kh21715kk12hz4+8337kk12hz3+8337kk32hz21715kk32hz1,B4=2416+1680kh2+16912kk12hz3+16912kk32hz2,B5=1191315kh2+1715kk12hz4+8337kk12hz3+8337kk32hz2+1715kk32hz1,B6=120504kh2+392kk12hz4+840kk12hz3+840kk32hz2+196kk32hz1,B7=121kh2+7kk12hz4+7kk12hz3+7kk32hz2+7kk32hz1,B8=7kk32hz4+7kk32hz4,B9=196kk32hz4+840kk32hz3,B10=1715kk32hz4+8337kk32hz3,B11=16912kk32hz3,B12=1715kk32hz4+8337kk32hz4,B13=196kk3hz4+840kk32hz3,B14=7kk32hz4+7kk32hz3,B15=1+42k2h2,B16=120+504kh2,B17=1191+315kh2,B18=24161680kh2, z1=δi3n+120δi2n+1191δi1n+2416δin+1191δi+1n+120δi+2n+δi+3n,z2=δi3n56δi2n245δi1n+245δi+1n+56δi+2n+δi+3n,z3=σi3n56σi2n245σi1n+245σi+1n+56σi+2n+σi+3n,z4=σi3n+120σi2n+1191σi1n+2416σin+1191σi+1n+120σi+2n+σi+3n.

The systems in the Equationequations (11) and Equation(12) consists of 2N+2equation in2N+14unknowns. To get a unique solution to the systems, 12 additional constraints are required. These are obtained from the boundary conditions (4). Application the boundary conditions enables us to eliminate the parameters δ3n+1,σ3n+1δ2n+1,σ2n+1,δ1n+1,σ1n+1,δN+1n+1,σN+1n+1,δN+2n+1,σN+2n+1,δN+3n+1, σN+3n+1 from the system. Thus, we have a system of dimension (2 N + 2) × (2 N + 2), which is the septa-diagonal system that can be solved by any algorithm.

4. Initial values

To solve the system, we apply the initial conditions to determine: (δ30,δ20,δ10,,δN+10,δN+20,δN+30) and (σ30,σ20,σ10,,σN+10,σN+20,σN+30).

When t = 0, Equationequation (9) becomes: UN0(x,0)=i=3N+3δi0Bi(x),VN0(x,0)=i=3N+3σi0Bi(x),

The approximate solution must satisfy the following:

(i) It must agree with the initial conditions at the knotsxi.

(ii) The derivatives of the approximate initial condition agree with the exact initialconditions at both ends of the range.

The initial conditions and the derivatives at the boundaries are used as below: (U)(x0,0)=7h(δ356δ2245δ1+245δ1+56δ2+δ3)=f(x0),(U)(x0,0)=42h2(δ3+24δ2+15δ180δ0+15δ1+24δ2+δ3)=f(x0),(U)(x0,0)=210h3(δ38δ2+19δ119δ1+8δ2+δ3)=f(x0),(U)(xj,0)=δj3+120δj2+1191δj1+2416δj+1191δj+1+120δj+2+δj+3=f(xj),(U)(xN,0)=7h(δN356δN2245δN1+245δN+1+56δN+2+δN+3)=f(xN),(U)(xN,0)=42h2(δN3+24δN2+15δN180δN+15δN+1+24δN+2+δN+3)=f(xN),(U)(x0,0)=210h3(δN38δN2+19δN119δN+1+8δN+2+δN+3)=f(xN), (V)(x0,0)=7h(σ356σ2245σ1+245σ1+56σ2+σ3)=g(x0),(V)(x0,0)=42h2(σ3+24σ2+15σ180σ0+15σ1+24σ2+σ3)=g(x0),(V)(x0,0)=210h3(σ38σ2+19σ119σ1+8σ2+σ3)=g(x0),(V)(xj,0)=σj3+120σj2+1191σj1+2416σj+1191σj+1+120σj+2+σj+3=g(xj),(V)(xN,0)=7h(σN356σN2245σN1+245σN+1+56σN+2+σN+3)=g(xN), (V)(xN,0)=42h2(σN3+24σN2+15σN180σN+15σN+1+24σN+2+σN+3)=g(xN),(V)(x0,0)=210h3(σN38σN2+19σN119σN+1+8σN+2+σN+3)=g(xN), which is a septa-diagonal system for unknown initial values δj0 and σj0 of order(2N+2), after eliminating the values of δandσ. This system can be solved by any algorithm. Once the initial vectors of parameters have been calculated, the numerical solution of coupled Burger equations U and V can be determined from the time evaluation of the vectors δjand σj by using the recurrence relations: U(xj,tn)=δj3+120δj2+1191δj1+2416δj+1191δj+1+120δj+2+δj+3,V(xj,tn)=σj3+120σj2+1191σj1+2416σj+1191σj+1+120σj+2+σj+3.

5. Stability analysis of the method

The stability analysis based on the von Neumann concept in which the growth factor of a typical Fourier mode defined as: (13) δjn=Aξneijϕ,σjn=Bξneijϕ,g=ξn+1ξn,(13) where A,Bare the harmonics amplitude, i is the imaginary unit. ϕ=kh, k is the mode number, h is the element size, and g is the amplification factor of the schemes.

The non-linear terms in the scheme are linearized by assuming the nonlinear terms as a constants λ1and λ2 respectively. Atx=xj, the Equationequations (11) and Equation(12) can be rewritten as: (14) a1δj3n+1+a2δj2n+1+a3δj1n+1+a4δjn+1+a5δj+1n+1+a6δj+2n+1+a7δj+3n+1a8σj3n+1a9σj2n+1a10σj1n+1+a10σj+1n+1+a9σj+2n+1+A8σj+3n+1=a11δj3n+a12δj2n+a13δj1n+a14δjn+a15δj+1n+a16δj+2n+a17δj+3n+a8σj3n+a9σj2n+a10σj1na10σj+1na9σj+2nA8σj+3n,(14) where a1=121kh27kk12hλ17kk22hλ2,      a2=1204224k2h2756kk12hλ1756kk22hλ2,a3=11914215k2h27245kk12hλ17245kk22hλ2,     a4=2416+42802h2k,a5=11914215k2h2+7245kk12hλ1+7245kk22hλ2,a6=1204224k2h2+756kk12hλ1+756kk22hλ2,a7=121kh2+7kk12hλ1+7kk22hλ2,a8=7kk22hλ1,    a9=756kk22hλ1,    a10=7245kk22hλ1,a11=1+21kh2+7kk12hλ1+7kk22hλ2,     a12=120+4224k2h2+756kk12hλ1+756kk22hλ2, a13=1191+4215k2h2+7245kk12hλ1+7245kk22hλ2,a14=241642802h2k, a15=1191+4215k2h27245kk12hλ17245kk22hλ2,a16=120+4224k2h2756kk12hλ1756kk22hλ2,    a17=1+21kh27kk12hλ17kk22hλ2, (15) b1σj3n+1+b2σj2n+1+b3σj1n+1+b4σjn+1+b5σj+1n+1+b6σj+2n+1+b7σj+3n+1+b8δj3n+1b9δj2n+1b10δj1n+1+b10δj+1n+1+b9δj+2n+1+b8δj+3n+1=b11σj3n+b12σj2n+b13σj1n+b14σjn+b15σj+1n+b16σj+2n+b17σj+3n+b8δj3n+b9δj2n+b10δj1nb10δj+1nb9δj+2nb8δj+3n,(15) where b1=121kh27kk12hλ27kk32hλ1,b2=1204224k2h2756kk12hλ2756kk32hλ1,b3=11914215k2h27245kk12hλ27245kk32hλ1,    b4=2416+42802h2k,b5=11914215k2h2+7245kk12hλ2+7245kk32hλ1,b6=1204224k2h2+756kk12hλ2+756kk32hλ1,    b7=121kh2+7kk12hλ2+7kk32hλ1,b8=7kk32hλ2,    b9=756kk32hλ2,b10=7245kk32hλ2,b11=1+21kh2+7kk12hλ2+7kk32hλ1,b12=120+4224k2h2+756kk12hλ2+756kk32hλ1,b13=1191+4215k2h2+7245kk12hλ2+7245kk32hλ1,b14=241642802h2k,b15=1191+4215k2h27245kk12hλ27245kk32hλ1,b16=120+4224k2h2756kk12hλ2756kk32hλ1,b17=1+21kh27kk12hλ27kk32hλ1.

Substituting (13) into the difference Equationequation (14), yields (16) g=X1iYX2+iY,(16) where X1=A[(2+42kh2)cos3ϕ+(240+4224kh2)cos2ϕ+(2382+4215kh2)cosϕ+(24162180kh2),]X2=A[(242kh2)cos3ϕ+(2404224kh2)cos2ϕ+(23824215kh2)cosϕ+(2416+2180kh2),] and Y=[B[(7kk2λ1h)sin3ϕ+(7(56)kk2λ1h)sin2ϕ+(7(245)kk2λ1h)sinϕ]A[7kh(k2λ2+k1λ1)sin3ϕ+756kh(k2λ2+k1λ1)sin2ϕ7245kh(k2λ2+k1λ1)sinϕ.]]

Similarly, substituting (13) into the difference Equationequation (15), results: (17) g=X3iY1X4+iY1,(17) where X3=B[(2+42kh2)cos3ϕ+(120+4224kh2)cos2ϕ+(2382+4215kh2)cosϕ+(24162180kh2),]X4=B[(242kh2)cos3ϕ+(1204224kh2)cos2ϕ+(23824215kh2)cosϕ+(2416+2180kh2),] and Y1=[A[(7kk3λ2h)sin3ϕ+(7(56)kk3λ2h)sin2ϕ+(7(245)kkλ2h)sinϕ]B[7kh(k3λ1+k1λ2)sin3ϕ+756kh(k3λ1+k1λ2)sin2ϕ+7245kh(k3λ1+k1λ2)sinϕ.]]

From Equationequations (16) and Equation(17),|g|1 hence the scheme is unconditionally stable.

6. Numerical tests and results of coupled burgers' equations

The performance of the proposed method was tested by using two numerical examples, in this section L2and Lerror norms obtained by the following formulas: L2=uexactunum2=hj=0N|ujexactujnum|2,L=uexactunum=maxj|ujexactujnum|,

Test problem (1):

Numerical solution of coupled Burgers Equationequations (2) and Equation(3) is calculated for k1=2,k2=k3=1which leads (2) and (3) as: utuxx2uux+(uv)x=0, vtvxx2vvx+(vu)x=0, with the following initial and boundary conditions: u(x,0)=v(x,0)=sin(x),                       πxπ. and u(π,t)=u(π,t)=0,0tT. v(π,t)=v(π,t)=0,0tT.

The exact solution is u(x,t)=v(x,t)=etsin(x),                           πxπ,0tT.

In the first computation,L2 and L error norms att=0.1, k=0.001was computed with various values ofN. The corresponding results are presented in . Second computation, L2 and Lerror norms at time level t=1, N=200 with decreasing values of Δt was calculated, the results are showed in . The results of both computations are the same for u(x,t)and v(x,t), because of the symmetric initial and boundary conditions. Furthermore, comparison of the numerical results of the problem (1) with the results obtained from Raslan et al. (Citation2016) for N=50, k=0.01, k1=2, k2=k3=1 with different time t has been studied. The results are presented in .

Table 1. L2-norm and L-norm fort=0.1, k=0.001 at deferent N.

Table 2. L2-norm and L-norm fort=1, k=0.01,0.001 when N=200.

Table 3. Comparison between numerical results of problem (1) and results obtained from (Raslan et al., Citation2016) for the variable u and v with, N=50, k=0.01.

The graphical illustrations are presented in for computed solutions of u(x,t) and v(x,t) at k1=2,k2=1, k3=1,N=200, Δt=k=0.001, t=0,    0.5,    1. represented solutions of u(x,t)and v(x,t) fork1=2, k2=1, k3=1,N=200 and Δt=k=0.001att=0,    0.05,    0.1. illustrated solutions (exact and approximation) of u(x,t)and v(x,t) for k1=2, k2=1, k3=1,N=200 and Δt=k=0.001 at t=    0.1. The profiles of u(x,t)and v(x,t) at Δt=k=0.001, N=200 and various values of k1,k2andk3 are plotted at different time steps and are showed in and .

Figure 1. Approximate solutions of uin (A) and vin (B) for k1=2,k2=1, k3=1,N=200 and Δt=k=0.001 at t=0,    0.5,    1.

Figure 1. Approximate solutions of uin (A) and vin (B) for k1=−2, k2=1, k3=1,  N=200 and Δt=k=0.001 at t=0,    0.5,    1.

Figure 2. Approximate solutions of uin (A) and vin (B) for k1=2,k2=1, k3=1,N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 2. Approximate solutions of uin (A) and vin (B) for k1=−2, k2=1, k3=1,  N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 3. Exact and approximate solutions of uin (A) and vin (B) for k1=2,k2=1, k3=1,N=200 and Δt=k=0.001 at t=    0.1.

Figure 3. Exact and approximate solutions of uin (A) and vin (B) for k1=−2, k2=1, k3=1,  N=200 and Δt=k=0.001 at t=    0.1.

Figure 4. Approximate solutions of uin (A) and vin (B) for k1=2,k2=1, k3=8,N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 4. Approximate solutions of uin (A) and vin (B) for k1=−2, k2=1, k3=8,  N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 5. Approximate solutions of uin (A) and vin (B) for k1=2,k2=8, k3=1,N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 5. Approximate solutions of uin (A) and vin (B) for k1=−2, k2=8, k3=1,  N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 6. Approximate solutions of uin (A) andvin (B) for k1=2,k2=1, k3=1,N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Figure 6. Approximate solutions of uin (A) andvin (B) for k1=2, k2=1, k3=1,  N=200 and Δt=k=0.001 at t=0,    0.05,    0.1.

Test problem (2)

Numerical solutions of considered coupled Burgers' equations have been obtained for k1=2with different values of k2 and k3 at different time levels. In this situation the exact solution is u(x,t)=a02A[2k214k2k31]tanh(A(x2At)),v(x,t)=a0[2k312k21]2A[2k214k2k31]tanh(A(x2At)).                          

The initial and boundary conditions are taken from the exact solution given below: u(x,0)=a02A[2k214k2k31]tanh(A(x)),v(x,0)=a0[2k312k21]2A[2k214k2k31]tanh(A(x)),        wherea0=0.05andA=12[a0(4k2k31)2k21]. The numerical solutions for u(x,t) and v(x,t) have been computed for the domainx[10,10],k=0.01 and number of partitionsN=10, N=50, N=100 and N=200. L2 and L norms have been presented in for t=1,k1=2,    k2=0.1 andk3=0.3. and include comparison of our numerical results of problem (2) with results obtained from (Raslan et al., Citation2016) for the variablesu(x,t)and v(x,t)witha0=0.05, N=16, k=0.01at different timetand different values of k2,    k3. and , contain comparison of our numerical results of problem (2) with results obtained from (Raslan et al., Citation2016) for the variables u(x,t) and v(x,t) with a0=0.05, N=21, k=0.01at different values of k2,    k3 and t.

Table 4. L2-norm and L-norm fort=1,k=0.01 at deferent values of N k1=2,    k2=0.1 and k3=0.3.

Table 5. Comparison between numerical results of problem (2) and results obtained from (Raslan et al., Citation2016) for the variable u with a0=0.05, N=16,k=0.01.

Table 6. Comparison between numerical results of problem (2) and results obtained from (Raslan et al., Citation2016) for the variable v with a0=0.05, N=16,k=0.01.

Table 7. Comparison between numerical results of problem (2) and results obtained from (Raslan et al., Citation2016) for the variable uwitha0=0.05, N=21, k1=2, k=0.01.

Table 8. Comparison between numerical results of problem (2) and results obtained from (Raslan et al., Citation2016) for the variable v with a0=0.05, N=21,k=0.01.

Table 9. L2- norm and L-norm fort=1,k=0.01 at deferent values of N, k1=2, k2=0.1and k3=0.3.

The corresponding graphical illustrations are presented in (), computed approximation solutions of u(x,t)and v(x,t) fork1=2,k2=0.1, k3=0.3,N=200 and Δt=k=0.01 at t=0,    0.5,    1,     x[0,1].

Figure 7. Approximate solutions of uin (A) and vin (B) fork1=2,k2=1,k3=0.3,N=200 and Δt=k=0.01 at t=0,    0.5,    1.

Figure 7. Approximate solutions of uin (A) and vin (B) fork1=2, k2=1, k3=0.3, N=200 and Δt=k=0.01 at t=0,    0.5,    1.

7. Conclusions

In this paper, a numerical scheme for the nonlinear coupled Burger's equations has been proposed using a collocation method based on septic B-spline functions. The proposed method is unconditionally stable. The method has been evaluated by two test problems. The accuracy of the method has been measured by computing L2 and L error norms. The obtained numerical results are quite satisfactory and comparable with the analytic solution and better than the obtained numerical results in (Raslan et al., Citation2016). Based on the stability and accuracy of the proposed method, the method can be extended to solve various linear and nonlinear partial differential equations.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Abdou, M. A., & Soliman, A. A. (2005). Variational iteration method for solving Burgers and coupled Burger equations. The Journal of Computational and Applied Mathematics, 181(2), 245–251.
  • Ali, K. K., Raslan, K. R., & El-Danaf, T. S. (2015). Non-polynomial spline method for solving coupled Burgers’ equations. Computational Methods for Differential Equations, 3(3), 218–230.
  • Bashan, A., Karakoc, S. B. G., & Geyikli, T. (2015). B-spline differential quadrature method for the modified Burgers' equation. Cankaya University Journal of Science and Engineering, 12(1), 1–13.
  • Bonkile, M. P., Awasthi, A., Lakshmi, C., Mukundan, V., & Aswin, V. S. (2018). A systematic literature review of Burgers’ equation with recent advances. Pramana: Journal of Physics, 90, 69.
  • Bryan, R., Todd, O., Lee, M. K., & Robert, M. (2017). A mass-conserving mixed Fourier-Galerkin B-spline-collocation method for direct numerical simulation of the variable- density Navier-Stokes equations. APS Division of Fluid Dynamics, 2017, A32.006R.
  • Burger, J. M. (1948). A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics, 1, 171–199.
  • Cole, J. D. (1951). On a quasi linear parabolic equations occurring in aerodynamics. Quarterly of Applied Mathematics, 9(3), 225–236.
  • Deghan, M., Asgar, H., & Mohammad, S. (2007). The solution of coupled Burgers equations using Adomian-Pade technique. Appl. Math. Comput, 189(2), 1034–1047.
  • El-Danaf, T. S. (2008). Septic B-spline method of the Korteweg-de Vries-Burger’s equation. Communications in Nonlinear Science and Numerical Simulation, 13, 554–566.
  • Ersoy, O., & Dag, I. (2015, March 2). An exponential cubic B-spline finite element method for solving the nonlinear coupled Burger equation. arXiv:1503.00456 [Math NA].
  • Esipov, S. E. (1995). Coupled Burger's equations-a model of polydispersive sedimentation. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 52(4), 3711–3718.
  • Geyikli, T., & Karakoc, S. B. G. (2011). Septic B-spline collocation method for the numerical solution of the modified equal width wave equation. Applied Mathematics, 2(6), 739–749.
  • Islam, S., Sarler, B., Vertnik, R., & Kosec, G. (2012). Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear couple Burgers equations. Appl. Math. Model, 36(3), 1148–1160.
  • Karakoc, S. B. G., Bashan, A., & Geyikli, T. (2014). Two different methods for numerical solution of the Modified Burgers' equation. The Scientific World Journal, 2014, 780269.
  • Karakoc, S. B. G., & Zeybek, H. (2016). Solitary-wave solutions of the GRLW equation using septic B-spline collocation method. Journal of Applied Mathematics and Computing, 289, 159–1571. doi:10.1016/j.amc.2016.05.021
  • Kaya, D. (2001). An explicit solution of coupled viscous Burgers equations by the Decomposition method. Int. J. Math. Math. Sci, 27(11), 675–680. doi:10.1155/S0161171201010249
  • Khater, A. H., Temsah, R. S., & Hassan, M. M. (2008). A Chebyshev spectral collocation method for solving Burgers-type equations. The Journal of Computational and Applied Mathematics, 222(2), 333–350.
  • Korkmaz, A., & Akmaz, H. K. (2015). Numerical simulations for transport of conservative pollutants. Selcuk Journal of Applied Mathematics, 16(1), 1–11.
  • Korkmaz, A., & Akmaz, H. K. (2018). Numerical solution of non-conservative linear transport problem. TWMS Journal of Applied and Engineering Mathematics, 8(1a), 167–177.
  • Kutluay, S., & Ucar, Y. (2013). Numerical solutions of the coupled Burgers’ equation by the Galerkin quadratic B‐spline finite element method. Mathematical Methods in the Applied Sciences, 36(17), 2403–2415. doi:10.1002/mma.2767
  • Lashkarian, E., Hejazi, S. R., Habibi, N., & Motamednezhad, A. (2019). Symmetry properties, conservation laws, reduction and numerical approximations of time fractional cylindrical- Burger equation. Communications in Nonlinear Science and Numerical Simulation, 67, 176–191.
  • Luo, X. Q., Liu, L. B., Ouyang, A., & Long, G. (2018). B-spline collocation and self-adapting differential evolution (jDE) algorithm for a singularly perturbed convection–diffusion problem. Soft Computing, 22(8), 2683–2693.
  • Mittal, R. C., & Arora, G. (2011). Numerical solution of the coupled viscous Burgers’ equation. Communications in Nonlinear Science and Numerical Simulation, 16(3), 1304–1313.
  • Mokhtari, R., Toodar, A. S., & Chegini, N. G. (2011). Application of the generalized differential quadrature method in solving Burgers’ equations. Communications in Theoretical Physics, 56(6), 1009–1015.
  • Nee, J., & Duan, J. (1998). Limit set of trajectories of the coupled viscous Burgers’ equations. Applied Mathematics Letters, 11(1), 57–61.
  • Pana, K., Wu, X., Yue, X., & Ni, R. (2018). A spatial sixth-order CCD-TVD method for solving multidimensional coupled Burgers’ equation. arXiv:1805.08407v1 [Math NA].
  • Prakasha, A., Kumar, M., & Sharma, K. K. (2015). Numerical method for solving fractional coupled Burgers equations. Journal of Applied Mathematics and Computing., 260, 314–320.
  • Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical mathematics. Berlin: Springer-Verlag.
  • Ramadan, M. A., El- Danaf, T. S., & Abd Alaal, F. E. (2005). A numerical solution of the Burgers' equation using septic B-splines. Chaos Solitons & Fractals, 26, 795–804.
  • Rashid, A., & Ismail, A. I. (2009). A Fourier pseudo spectral method for solving coupled Viscous Burgers equations. Computational Methods in Applied Mathematics, 9(4), 412–420.
  • Raslan, K. R., El-Danaf, T. S., & Ali, K. K. (2016). Collocation method with cubic trigonometric B-spline algorithm for solving coupled Burges' equations. Far East Journal of Applied Mathematics, 95(2), 109–123.
  • Raslan, K. R., El-Danaf, T. S., & Ali, K. K. (2017). Collocation method with quintic B- spline method for solving coupled Burges' equations. Far East Journal of Applied Mathematics, 96(1), 55–75.
  • Rubin, S. G., & Graves, R. A. (1975). Cubic spline approximation for problems in fluid mechanics. NASA TRR-436. Washington, DC: NASA.
  • Rohila, R., & Mittal, R. C. (2018). Numerical study of reaction diffusion Fisher’s equation by fourth order cubic B-spline collocation method. Mathematical Sciences, 12(2), 79–89.
  • Sharifi, S., & Rashidinia, J. (2016). Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method. Journal of Applied Mathematics and Computing, 281, 28–38.
  • Shi, F., Zheng, H., Cao, Y., Li, J., & Zhao, R. (2017). A fast numerical method for solving coupled Burgers’ equations. Numerical Methods for Partial Differential Equations, 33(6), 1823–1838.
  • Soliman, A. A. (2006). The modified extended tanh-function method for solving Burgers type equations. Journal of Physics A: Mathematical and Theoretical, 361(2), 394–404.
  • Soliman, A. A., & Hussien, M. H. (2005). Collocation solution for RLW equation with septic spline. Journal of Applied Mathematics and Computing, 161, 623–636.
  • Srivastava, V. K., Awasthi, M. K., Tamsir, M., & Singh, S. (2013). An implicit finite-difference solution to one dimensional coupled Burgers' equation. Asian-European Journal of Mathematics, 6(4), 1350058.
  • Srivastava, V. K., Awasthi, M. K., & Tamsir, M. (2013). A fully implicit finite-difference solution to one dimensional coupled nonlinear Burgers equation. International Journal of Computing Science and Mathematics, 7(4), 283–288.
  • Srivastava, V. K., Tamsir, M., Awasthi, M. K., & Singh, S. (2014). One-dimensional coupled Burgers' equation and its numerical solution by an implicit logarithmic finite-difference method. AIP Advances, 4(3), 037119.
  • Wang, G. W., & Kara, A. H. (2018). Group analysis, fractional explicit solutions and conservation laws of time fractional generalized Burgers’ equation. Communications in Theoretical Physics, 69(1), 5–8.
  • Wei, G. W., & Gu, Y. (2002). Conjugate filter approach for solving Burgers’ equation. The Journal of Computational and Applied Mathematics, 149(2), 439–456.