487
Views
0
CrossRef citations to date
0
Altmetric
Pure Mathematics

On the Riemann–Liouville fractional q-calculus operator involving q-Mittag–Leffler function

ORCID Icon & ORCID Icon | (Reviewing editor:)
Article: 2292549 | Received 02 Nov 2023, Accepted 05 Dec 2023, Published online: 14 Dec 2023

ABSTRACT

The aim of this paper is to establish four theorems under the fractional q-calculus operators that provide an image formula for the q-analogue of generalized Mittag–Leffler function. Due to the general nature of the q-calculus operators and the generalized q-Mittag–Leffler function, a number of results involving special functions that can be achieved only by making appropriate values for the parameters.

MATHEMATICS SUBJECT CLASSIFICATION:

1. Introduction

From the perspective of course of the utility of these results in the evaluation of q-integrals, and the solution of q-differential and q-integral equations, it is necessary to determine the fractional q-derivatives (and fractional q-integrals) of special functions of one and much more variables. The concept of q-analogue of generalized Mittag–Leffler (M-L) functions and the fractional q-calculus of one and much more variables has a broad variety of applications in diverse areas in physical, mathematical and technical sciences, namely, partition theory, number theory, lie theory, mixture analysis, quantum theory, etc. Influenced by these lines of study, a number of scholars have used the fractional q-calculus operators (see Al-Salam, Citation1966; Kalla et al., Citation2005; Purohit & Kalla, Citation2009; Purohit & Selvakumaran, Citation2015), q-integral inequalities (see Agarwal et al., Citation2014, Citation2015; Baleanu & Agarwal, Citation2014; Choi & Agarwal, Citation2014; Khan et al., Citation2022; Nosheen et al., Citation2023; Wang et al., Citation2022) and fractional quantum calculus and applications (see, for details, Al-Omari et al., Citation2018; Purohit & Ucar, Citation2018; Tariboon et al., Citation2015) in the theory of special functions in several variables.

In the theory of q-series (see Gasper & Rahman, Citation1990), nN, and for a real or complex a, the q-shifted factorial is defined by

(a;q)0=1,(a;q)n=k=0n1(1aqk),(a;q)=k=0(1aqk).

Gasper and Rahman (Citation1990) have given the definitions of q-gamma function and q-analogue of the beta function as

(1.1) Γq(α)=(q;q)(qα;q)(1q)1α=(α;q)α1(1q)α1,(αC,|q|<1),(1.1)

and

(1.2) Bq(x,y)=01zx1(zq;q)(zqy;q)dqz=Γq(x)Γq(y)Γq(x+y),((x)>0,(y)>0).(1.2)

The q-analogue of power function (zτ)α is defined as

(1.3) (zτ)qα=zα(τ/z;q)α=zα(τ/z;q)(qατ/z;q),(z0,0<|q|<1).(1.3)

Also, Rajkovic et al. (Citation2007) defined a q-derivative of a function f(x) by

(1.4) (Dqf)(x)=f(x)f(qx)(1q)x,(x0,q1),(1.4)

and

(1.5) limq1Dqf(x)=df(x)dx.(1.5)
(D1qf)(x)=qn(Dqnf)(xqn),
Dq(f(x)g(x))=g(x)Dqf(x)+f(qx)Dqg(x),
Dq(f(x)/g(x))=(g(x)Dqf(x)f(x)Dqg(x))/g(x)g(qx).

Recently, q-analogue of generalized M-L function was introduced by Nadeem et al. (Citation2020) for ()>(ω)>0 and |q|<1 in the following manner:

(1.6) Eε,δ(ω;)(z;q)=n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nznΓq(εn+δ),(1.6)

where Bq(.) is the q-analogue of beta function.

We list the relationships as special cases of q-analogue of the generalized M-L function with other special functions as shown below:

(1)

On setting =1 in (Equation1.6), we obtain

(1.7) Eε,δ(ω;1)(z;q)=n=0(qω;q)n(q;q)nznΓq(εn+δ)=Eε,δω(z;q),(1.7)

which is introduced by Sharma and Jain (Citation2014).

(2)

Again, on making ω = 1 in (Equation1.6), we obtain

(1.8) Eε,δ(1;)(z;q)=n=0znΓq(εn+δ)=eε,δ(z;q),(1.8)

the function eε,δ(z;q) can be termed as q-analogue of the M-L function which is introduced by Mansour (Citation2009).

(3)

On letting ω=ε=δ=1 in (Equation1.6), we obtain

(1.9) E1,1(1;)(z;q)=n=0(q;q)n(q;q)nzn=(qn;q)(q;q)=1ϕ0(q;;q,z),(1.9)

where the function 1ϕ0(q;;q,z)=(1z) can be termed as q-binomial function.

In fractional calculus, the classical M-L function is now regarded as the queen function by some mathematicians. The M-L function has drawn the attention of numerous researchers in the field of fractional calculus and its applications because it can solve some issues expressed in terms of fractional order differential, difference and integral equations.

Motivated by these avenues of applications, a massive amount of research in the theory of M-L functions has been studied in the literature. For a detailed account of the various generalizations, properties and applications of the M-L function, readers may refer to the literature (see Amsalu & Suthar, Citation2018; Din & Abidin, Citation2022; Nisar et al., Citation2020; Suthar et al., Citation2019, Citation2019, Citation2020; Uçar et al., Citation2021; Yavuz, Citation2022; Yavuz & Abdeljawad, Citation2020). Our goal in this study is to prove four theorems under the fractional q-calculus operators, which give an image formula for the extended M-L function’s q-analogue. Before the conclusion, special cases of the main results are also presented.

2. Fractional q-calculus approach

In this section, first, we would like to provide some definitions of these q-fractional operators.

As a well-known, left-sided Riemann–Liouville (R-L) q-fractional operator introduced by Agarwal (Citation1969) when a = 0 and by Rajkovic et al. (Citation2009) for a0 as follows:

(2.1) (Iq,a+ϑf)(x)=xϑ1Γq(ϑ)ax(qz/x;q)ϑ1f(z)dqz.(2.1)

Further, Mansour (Citation2016) defines a right-sided R-L q-fractional operator as

(2.2) (Iq,bϑf)(x)=1Γq(ϑ)qxbzϑ1(qx/z;q)ϑ1f(z)dqz.(2.2)

From Mansour (Citation2016), for ϑ > 0 and ϑ=m, the left- and right-sided R-L fractional q-derivatives of order ϑ are defined by

(2.3) (Dq,a+ϑf)(x)=(DqmIq,a+mϑf)(x),(2.3)

and

(2.4) (Dq,bϑf)(x)=(1q)m(Dq1mIq,bmϑf)(x),(2.4)

the left- and right-sided Caputo fractional q-derivatives of order ϑ are defined by

(2.5) (cDq,a+ϑf)(x)=(Iq,a+mϑDqmf)(x),(cDq,bϑf)(x)=(1q)m(Iq,bmϑDq1mf)(x).(2.5)

This section would establish the following fascinating outcomes in the form of theorems. Here, we present the generalized q-M-L function in view of the fractional q-integrals and fractional q-derivative representations.

Theorem 2.1.

Let ε,δ,ωC, (ε)>0,(δ)>0,\break()>(ω)>0,a, ϑ>0, |q|<1, and Iq,0+ϑ be the left side of R-L q-fractional integral operator (Equation2.1). Then, there holds the following formula true:

(2.6) (Iq,0+ϑ{zδ1Eε,δ(ω;)(azε;q)})(x)=xϑ+δ1Eε,δ+ϑ(ω;)(axε;q).(2.6)

Proof.

Let Ω1 be the left-hand side of (Equation2.6), and using the generalized q-M-L function (Equation1.6) and the left-sided R-L q-fractional operator (Equation2.1) on the left-hand side of (Equation2.6), we have

Ω1=xϑ1Γq(ϑ)0x(qz/x;q)ϑ1zδ1Eε,δ(ω;)(azε;q)dqz=xϑ1Γq(ϑ)0x(qz/x;q)ϑ1zδ1n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nanzεnΓq(εn+δ)dqz=n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nanΓq(εn+δ)xϑ1Γq(ϑ)0x(qz/x;q)ϑ1zδ+εn1dqz.

Now, using EquationEquation (1.3) in the above expression reduces to

(2.7) Ω1=1Γq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nanΓq(εn+δ)×xϑ10x(qz/x;q)(qϑz/x;q)zδ+εn1dqz.(2.7)

Substituting z=ϕx, then ϕ=z/x in (Equation2.7), we get

Ω1=xϑ+δ1Γq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(axε)nΓq(εn+δ)01(qϕ;q)(qϑϕ;q)ϕδ+εn1dqϕ.

Using EquationEquation (1.2), we obtain

(2.8) Ω1=xϑ+δ1Γq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(axε)nΓq(εn+δ)Γq(δ+εn)Γq(ϑ)Γq(δ+ϑ+εn).(2.8)

Interpreting the right-hand side of (Equation2.8), with regard to description (Equation1.6), we conclude at outcome (Equation2.6).

Theorem 2.2.

Let ε,δ,ωC, (ε)>0,(δ)>0,\break()>(ω)>0,a, ϑ>0, |q|<1 be the right side of R-L q-fractional integral operator (Equation2.2). Then, it holds the subsequent formula:

(2.9) (Iq,ϑ{zϑδEε,δ(ω;)(azε;q)})(x)=xδqEε,δ+ϑ(ω;)(axε;q).(2.9)

Proof.

Let Ω2 be the left-hand side of (Equation2.9), and using EquationEquations (1.6) and (Equation2.2) on the left-hand side of (Equation2.9), we have

Ω2=1Γq(ϑ)qxzϑ1(qx/z;q)ϑ1zϑδEε,δ(ω;)(azε;q)dqz=n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nanΓq(εn+δ)1Γq(ϑ)qx(qx/z;q)ϑ1zδεn1dqz.

Now, using EquationEquation (1.3) in the above expression reduces to

(2.10) Ω2=1Γq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)nanΓq(εn+δ)×qx(qx/z;q)(qϑ1qx/z;q)zδεn1dqz.(2.10)

Substituting z=qx/θ, then θ=qx/z in (Equation2.10), we get

(2.11) Ω2=xδΓq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(axε)nΓq(εn+δ)×qδεn101(θ;q)(qϑ1θ;q)θδ+εn1dqθ.(2.11)

Replacing θ=λq in (Equation2.11), we get

(2.12) Ω2=xδΓq(ϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(axε)nΓq(εn+δ)q1×01(λq;q)(λqϑ;q)(λ)δ+εn1dq(λ).(2.12)

Using EquationEquations (1.2) in (Equation2.12), we get

(2.13) Ω2=xδqn=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(axε)nΓq(εn+δ+ϑ).(2.13)

Interpreting the right-hand side of (Equation2.13), with regard to description (Equation1.6), we conclude at result (Equation2.9).

Theorem 2.3.

Let ε,δ,ωC, (ε)>0,(δ)>0,\break()>(ω)>0,a, ϑ>0, |q|<1 and Dq,0+ϑ be the left-sided operator of R-L q-fractional integral (Equation2.3). Then, there holds the following formula true:

(2.14) (Dq,0+ϑ{zδ1Eε,δ(ω;)(azε;q)})(x)=xϑδ1Eε,δϑ(ω;)(axε;q).(2.14)

Proof.

On the left-hand side of (Equation2.14), let Ω3, and using (Equation1.6) and (Equation2.3), we have

Ω3=Dqm(Iq,0+mϑ{zδ1Eε,δ(ω;)(azε;q)})(x)=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)×(q;q)n(q;q)nanΓq(εn+δ)Dqmxmϑ1×0xzδ+εn1(qz/x;q)mϑ1dqz.

Now, using EquationEquation (1.3) in the above expression reduces to

(2.15) Ω3=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×anΓq(εn+δ)Dqmxmϑ1×0xzδ+εn1(qz/x;q)(qmϑz/x;q)dqz.(2.15)

Substituting z=ϕx, then ϕ=z/x in (Equation2.15), we get

Ω3=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×anΓq(εn+δ)Dqmxmϑ+δ+εn1×01(ϕq;q)(ϕqmϑ;q)ϕδ+εn1dqϕ.

Using EquationEquation (1.2) on the above expression, we obtain

(2.16) Ω3=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×anΓq(εn+δ)Dqmxmϑ+δ+εn1Bq(δ+εn,mϑ).(2.16)

Implementing EquationEquation (1.2) and making a simple calculation, we arrive at result (Equation2.14).

Theorem 2.4.

Let ε,δ,ωC, (ε)>0,(δ)>0,\break()>(ω)>0,a, δϑ+{ϑ}>1, |q|<1 and Dq,ϑ be the right-sided operator of R-L q-fractional integral (Equation2.2). Then, there holds the subsequent formula:

(2.17) (Dq,ϑ{zϑδEε,δ(ω;)(azε;q)})(x)=xδqm+1Eε,δϑ(ω;)(axε;q).(2.17)

Proof.

Let Ω4 be the left-hand side of (Equation2.17), and using EquationEquations (1.6) and (Equation2.2), we have

Ω4=(1q)mDq1m(Iq,mϑ{zϑδEε,δ(ω;)(azε;q)})(x)=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×anΓq(εn+δ)(1q)mDq1m×qx(qx/z;q)mϑ1zmδεn1dqz.

Now, using EquationEquation (1.3) in the above expression reduces to

(2.18) Ω4=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×anΓq(εn+δ)(1q)mDq1m×qx(qx/z;q)(qmϑx/z;q)zmδεn1dqz.(2.18)

Substituting z=qx/ζ, then ζ=qx/z in (Equation2.18), we get

(2.19) Ω4=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×(a)nΓq(εn+δ)(1q)mDq1mxmδεnqmδεn1×01(ζ;q)(qmϑ1ζ;q)ζm+δ+εn1dqζ.(2.19)

Replacing ζ=λq in (Equation2.19), we get

(2.20) Ω4=1Γq(mϑ)n=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n×(a)nΓq(εn+δ)(1q)m×Dq1mxmδεnq101λδm+εn1(λq;q)(qmϑλ;q)dq(λ).(2.20)

Using EquationEquation (1.2) in (Equation2.12), we get

(2.21) Ω4=1qn=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(a)nΓq(εn+δ)×(1q)mDq1mxmδεnΓq(δm+εn)Γq(δϑ+εn).(2.21)

Also using Equation (Equation1.4), we get

(2.22) Ω4=1qn=0Bq(ω+n,ω)Bq(ω,ω)(q;q)n(q;q)n(a)nΓq(εn+δ)×(1q)mqmDqm(xmδεnqm)Γq(δm+εn)Γq(δϑ+εn).(2.22)

On simplification of the right-hand side of (Equation2.22), with regard to description (Equation1.6), we conclude at the result (Equation2.17).

3. Special cases

With the aid of the results developed in the prior segment, this section would establish the following fascinating outcomes in the form of corollaries. As these findings are direct implications of EquationEquations (1.7) and (Equation1.8) and theorems 2.12.4, they are provided without evidence here.

(i) If we put =1, in theorems 2.12.4, we obtain the following interesting results in the form of corollaries 3.13.4, respectively.

Corollary 3.1.

(3.1) (Iq,0+ϑ{zδ1Eε,δ(ω;1)(azε;q)})(x)=xϑ+δ1Eε,δ+ϑω(axε;q).(3.1)

Corollary 3.2.

(3.2) (Iq,ϑ{zϑδEε,δ(ω;1)(azε;q)})(x)=xδqEε,δ+ϑω(axε;q).(3.2)

Corollary 3.3.

(3.3) (Dq,0+ϑ{zδ1Eε,δ(ω;1)(azε;q)})(x)=xϑδ1Eε,δϑω(axε;q).(3.3)

Corollary 3.4.

(3.4) (Dq,ϑ{zϑδEε,δ(ω;1)(azε;q)})(x)=xδqm+1Eε,δϑω(axε;q).(3.4)

(ii) If we put ω = 1, in theorems 2.12.4, we obtain the following interesting results in the form of corollaries 3.53.8, respectively.

Corollary 3.5.

(3.5) (Iq,0+ϑ{zδ1Eε,δ(1;)(azε;q)})(x)=xϑ+δ1eε,δ+ϑ(axε;q).(3.5)

Corollary 3.6.

(3.6) (Iq,ϑ{zϑδEε,δ(1;)(azε;q)})(x)=xδqeε,δ+ϑ(axε;q).(3.6)

Corollary 3.7.

(3.7) (Dq,0+ϑ{zδ1Eε,δ(1;)(azε;q)})(x)=xϑδ1eε,δϑ(axε;q).(3.7)

Corollary 3.8.

(3.8) (Dq,ϑ{zϑδEε,δ(1;)(azε;q)})(x)=xδqm+1eε,δϑ(axε;q).(3.8)

4. Conclusion

The results presented in this article contribute to the study of the q-fractional calculus, specifically the q-analogue of the generalized functions of the M-L. The findings seen in this paper tend to be recent and likely to have useful implications for a wide variety of mathematical, statistical and physical science problems.

Supplemental material

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

No data were used to support this study.

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/27684830.2023.2292549

Additional information

Notes on contributors

Mulugeta Dawud Ali

Mulugeta Dawud Ali is an Assistant Professor in the Department of Mathematics, College of Natural Science at Wollo University’s KIOT Campus. He is now doing his PhD at Wollo University. My research interests include q-Fractional Calculus, q-Special functions, q-Integral transformations, q-Hypergeometric Series, functional spaces, and Mathematical Physics. I am very familiar with mathematical application software like MATLAB, Mathematica, and Latex.

D.L. Suthar

Dr. D.L. Suthar is an Associate Professor at Wollo University in Dessie, Ethiopia’s Amhara Region. I have 15 years of teaching experience and 18 years of research experience, including a Ph.D. program. Among my research interests are special functions, fractional calculus, integral transformations, basic hypergeometric series, geometric function theory, and mathematical physics. ICM (Brazil, Russia) and ICIAM (Spain, Japan) offered me International Travel Grants to attend International Conferences. I have 185 research articles published in national and international journals, as well as three books for engineering students.

References

  • Agarwal, R. (1969). Certain fractional q-integrals and q-derivatives. Mathematical Proceedings of the Cambridge Philosophical Society, 66(2), 365–370. https://doi.org/10.1017/S0305004100045060
  • Agarwal, P., Dragomir, S. S., Park, J., & Jain, S. (2015). Q-integral inequalities associated with some fractional q-integral operators. Journal of Inequalities and Applications, 2015(1). https://doi.org/10.1186/s13660-015-0860-8
  • Agarwal, P., Salahshour, S., Ntouyas, S. K., & Tariboon, J. (2014). Certain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators. Scientific World Journal, 2014, 1–11. Article ID 174126.
  • Al-Omari, S. K. Q., Baleanu, D., & Purohit, S. D. (2018). Some results for Laplace-type integral operator in quantum calculus. Advances in Difference Equations, 2018(1). https://doi.org/10.1186/s13662-018-1567-1
  • Al-Salam, W. A. (1966). Some fractional q-integrals and q-derivatives. Proceedings of the Edinburgh Mathematical Society, 15(2), 135–140. https://doi.org/10.1017/S0013091500011469
  • Amsalu, H., & Suthar, D. L. (2018). Generalized fractional integral operators involving Mittag-Leffler function. Abstract and Applied Analysis, 2018, 1–8. Article ID 7034124. https://doi.org/10.1155/2018/7034124
  • Baleanu, D., & Agarwal, P. (2014). Certain inequalities involving the fractional q-integral operators. Abstract and Applied Analysis, 2014, 1–10. Article ID 371274.
  • Choi, J., & Agarwal, P. (2014). Some new Saigo type fractional integral inequalities and their q-analogues. Abstract and Applied Analysis, 2014, 1–11. Article ID 579260. https://doi.org/10.1155/2014/579260
  • Din, A., & Abidin, M. Z. (2022). Analysis of fractional-order vaccinated hepatitis-B epidemic model with Mittag-Leffler kernels. Mathematical Modelling and Numerical Simulation with Applications, 2(2), 59–72. https://doi.org/10.53391/mmnsa.2022.006
  • Gasper, G., & Rahman, M. (1990). Basic hypergeometric series. Cambridge University Press.
  • Kalla, S. L., Yadav, R. K., & Purohit, S. D. (2005). On the Riemann-Liouville fractional q-integral operator involving a basic analogue of fox H-function. Fractional Calculus and Applied Analysis, 8(3), 313–322.
  • Khan, K. A., Ditta, A., Nosheen, A., Awan, K. M., & Mabela, R. M. (2022). Ostrowski type inequalities for s-convex functions via q-integrals. Journal of Function Spaces, 2022, 1–8. Article ID 8063803. https://doi.org/10.1155/2022/8063803
  • Mansour, Z. S. I. (2009). Linear sequential q-difference equations of fractional order. Fractional Calculus and Applied Analysis, 12(2), 159–178.
  • Mansour, Z. S. I. (2016). Variational methods for fractional q-Sturm-Liouville problems. Journal of Fixed Point Theory and Applications, 2016(1). https://doi.org/10.1186/s13661-016-0659-7
  • Nadeem, R., Usman, T., Nisar, K. S., & Abdeljawad, T. (2020). A new generalization of Mittag-Leffler function via q-calculus. Advances in Difference Equations, 2020(1), 695. https://doi.org/10.1186/s13662-020-03157-z
  • Nisar, K. S., Suthar, D. L., Agarwal, R., & Purohit, S. D. (2020). Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function. Advances in Difference Equation, 2020(1). https://doi.org/10.1186/s13662-020-02610-3
  • Nosheen, A., Ijaz, S., Khan, K. A., Awan, K. M., Albahar, M. A., & Thanoon, M. (2023). Some q-symmetric integral inequalities involving s-convex functions. Symmetry, 15(6), 1169. https://doi.org/10.3390/sym15061169
  • Purohit, S. D., & Kalla, S. L. (2009). On the fractional q-calculus of a general class of q-polynomials. Algebras Groups Geometrics, 26, 1–14.
  • Purohit, S. D., & Selvakumaran, K. A. (2015). On certain generalized q-integral operators of analytic functions. Bulletin of the Korean Mathematical Society, 52(6), 1805–1818. https://doi.org/10.4134/BKMS.2015.52.6.1805
  • Purohit, S. D., & Ucar, F. (2018). An application of q-Sumudu transform for fractional q-kinetic equation. Turkish Journal of Mathematics, 42(2), 726–734. https://doi.org/10.3906/mat-1703-7
  • Rajkovic, P. M., Marinkovic, S. D., & Stankovic, M. S. (2007). Fractional integrals and derivatives in q-calculus. Applicable Analysis and Discrete Mathematics, 1(1), 311–323. https://doi.org/10.2298/AADM0701311R
  • Rajkovic, P., Marinkovic, S., & Stankovic, M. (2009). A generalization of the concept of q-fractional integrals. Acta Mathematica Sinica, English Series, 25(10), 1635–1646. https://doi.org/10.1007/s10114-009-8253-x
  • Sharma, S. K., & Jain, R. (2014). On some properties of generalized q-Mittag Leffler function. Mathematica Aeterna, 4(6), 613–619.
  • Suthar, D. L., Amsalu, H., & Godifey, K. (2019). Certain integrals involving multivariate Mittag-Leffler function. Journal of Inequalities and Applications, 2019(1), 208. https://doi.org/10.1186/s13660-019-2162-z
  • Suthar, D. L., Andualem, M., & Debalkie, B. (2019). A study on generalized multivariable Mittag-Leffler function via generalized fractional calculus operators. Journal of Mathematics, 2019, 1–7. Article ID 9864737. https://doi.org/10.1155/2019/9864737
  • Suthar, D. L., Shimelis, B., Abeye, N., & Amsalu, H. (2020). New composition formulae for the generalized fractional calculus operators with the extended Mittag-Leffler function. Mathematics in Engineering, Science and Aerospace, 11(2), 309–321.
  • Tariboon, J., Ntouyas, S. K., & Agarwal, P. (2015). New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Advances in Difference Equations, 2015(1). https://doi.org/10.1186/s13662-014-0348-8
  • Uçar, E., Uçar, S., Evirgen, F., & Özdemir, N. (2021). Investigation of E-Cigarette smoking model with Mittag-Leffler kernel. Foundations of Computing and Decision Sciences, 46(1), 97–109. https://doi.org/10.2478/fcds-2021-0007
  • Wang, X., Khan, K. A., Ditta, A., Nosheen, A., Awan, K. M., & Mabela, R. M. (2022). New developments on Ostrowski type inequalities via q-fractional integrals involving s-convex functions. Journal of Function Spaces, 2022, 1–12. Article ID 9742133. https://doi.org/10.1155/2022/9742133
  • Yavuz, M. (2022). European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numerical Methods for Partial Differential Equations, 38, 434–456.
  • Yavuz, M., & Abdeljawad, T. (2020). Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02828-1