499
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Construction of partially degenerate Laguerre–Bernoulli polynomials of the first kind

, &
Pages 362-375 | Received 07 Mar 2022, Accepted 10 May 2022, Published online: 27 May 2022

ABSTRACT

In this paper, we introduce partially degenerate Laguerre–Bernoulli polynomials of the first kind and deduce some relevant properties by using a preliminary study of these polynomials. We derive some theorems on implicit summation formulae for partially degenerate Laguerre–Bernoulli polynomials of the first kind LBj(ξ,η|λ). Finally, we derive some symmetry identities for partially degenerate Laguerre–Bernoulli polynomials of the first kind.

2010 MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote respectively, the ring of p-adic integers, the field of p-adic rational numbers and the completion of an algebraic closure of Qp. The p-adic norm |.|p is normally defined as |p|p=p1. Let f(ξ) be continuous function on Zp. Then the p-adic invariant integral on Zp is defined by (see [Citation1]) (1) Zpf(ξ)dμ0(ξ)=limNξ=0pN1f(ξ)μ0(ξ+pNZp)=limN1pNξ=0pN1f(ξ).(1) It is apparent from (Equation1) that (2) Zpfj(ξ)dμ0(ξ)Zpf(ξ)dμ0(ξ)=l=0j1f(l),(jN),(2) where fj(ξ)=f(ξ+j), (see [Citation1,Citation2]).

The Bernoulli polynomials are defined by the generating function (3) Zpe(ξ+η)zdμ0(η)=zez1eξz=j=0Bj(ξ)zjj!,(see[3,4]).(3) When ξ=0, Bj=Bj(0) are called the Bernoulli numbers.

The two variable Laguerre polynomials (2-VLP) Łn(x,y) [Citation5] are defined by (4) 1(1ηz)exp(ξz1ηz)=j=0Łj(ξ,η)zj,(ηz∣<1),(4) which is equivalently [Citation6,Citation7] given by (5) exp(ξz)C0(ηz)=j=0Łj(ξ,η)znj!.(5) From (Equation4) and (Equation5), we have (6) Łj(ξ,η)=j!s=0j(1)sξsηjs(s!)2(js)!=ηjŁj(ξ/η).(6) Thus we have (7) Łj(ξ,η)=(1)jξjj!,Łj(0,η)=ηj,Łj(ξ,1)=Łj(ξ),(7) where Lj(ξ) are the ordinary Laguerre polynomials [Citation6].

The Daehee polynomials are defined by the generating function (8) log(1+z)z(1+z)ξ=j=0Dj(ξ)zjj!,(see[8])(8) In the case ξ=0, Dj=Dj(0) are the Daehee numbers.

The Bernoulli polynomials of the second kind are defined by the generating function (9) zlog(1+z)(1+z)ξ=j=0bj(ξ)zjj!,(see[9,10])(9) At the point x = 0, bn=bn(0) are called the Bernoulli numbers of the second kind.

For λ,zCp with λzp<p1p1, the partially degenerate Bernoulli polynomials of the first kind are defined by the generating function (see [Citation11]) (10) log(1+λz)1λez1eξz=j=0Bj(ξ|λ)zjj!.(10) When ξ=0, Bj(λ)=Bj(0|λ) are called the partially degenerate Bernoulli numbers of the first kind.

Kwon et al. [Citation8] proved that Dj(r)(ξ|λ)=l=0j(jl)Dl(r)(λ)ξjl,where (11) (log(1+t)log(1+λt)1λ)rext=n=0Dn(r)(x|λ)tnn!.(11) The falling factorial sequence is defined by (ξ)0=1,(ξ)j=ξ(ξ1)(ξj+1),(j1).The first kind of Stirling numbers are defined by (12) (ξ)j=k=0jS1(j,k)ξk,(j0),(see[37,9,10,1216])(12) and as an inversion formula of (Equation12), the Stirling numbers of the second kind are given by (see [Citation1,Citation2,Citation8,Citation11,Citation17–24]) (13) ξj=k=0jS2(j,k)(ξ)k.(13) From (Equation12) and (Equation13), we note that the generating function of Stirling numbers of the first kind and that of the second kind are respectively given by (see [Citation1,Citation2,Citation8,Citation11,Citation19–24]) (14) 1k!(log(1+z))k=j=kS1(j,k)zjj!(14) and (15) 1k!(ez1)k=j=kS2(j,k)zjj!,(k0).(15) For each p0, Sp(j) [Citation24] defined by (16) Sp(j)=l=0jlp(16) is called the sum of integer power sum or simply powers sum. The exponential generating function for Sp(j) is (17) p=0Sp(j)zpp!=1+ez+e2z++ejz=e(j+1)z1ez1.(17) For any nonnegative integer r, the r-Stirling numbers Sr(j,k) of the second kind are defined by (see [Citation13]) (18) 1k!erz(ez1)k=j=kSr(j+r,k+r)zjj!.(18)

Motivated by their importance and potential for applications in certain problems in number theory, combinatorics, classical and numerical analysis, and other fields of applied mathematics, a variety of polynomials and numbers with their variants and extensions have recently been introduced and investigated. In this paper, we aim to introduce partially degenerate Laguerre–Bernoulli polynomials of the first kind and investigate some properties such as explicit summation formulas, addition formulas, implicit formulas and symmetry identities. Relevant connections of the results presented here with those relatively simple numbers and polynomials are considered.

2. Partially degenerate Laguerre–Bernoulli polynomials of the first kind

In this section, we introduce a partially degenerate Laguerre–Bernoulli polynomials of the first kind and investigate some properties of these polynomials. First, we present the following definition.

Definition 2.1

Let us assume that λ,zCp such that |λz|p<p1p1. In view of (Equation5) and (Equation10), we introduce the partially degenerate Laguerre–Bernoulli polynomials of the first kind which are given by the generating function (19) log(1+λz)1λez1eξzC0(ηz)=j=0LBj(ξ,η|λ)zjj!,(ξ,ηR,z∣<π).(19) At the point ξ=η=0 in (Equation19), LBj(0,0|λ)=LBj(λ) are called the partially degenerate Laguerre–Bernoulli numbers of the first kind.

From (Equation19), we note that (20) j=0limλ0LBj(ξ,η|λ)zjj!=limλ0log(1+λz)1λez1eξzC0(ηz)=zez1eξzC0(ηz)=j=0LBj(ξ,η)zjj!.(20) Thus we get (21) limλ0LBj(ξ,η|λ)=LBj(ξ,η),(j0),(21) where LBj(ξ,η) are called the Laguerre–Bernoulli polynomials.

Theorem 2.1

Let j0. Then (22) LBj(ξ,η|λ)=l=0j(jl)Bl,λLjl(ξ,η).(22)

Proof.

Using (Equation5), (Equation10) and (Equation19), we have j=0LBj(ξ,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)=(l=0Bl,λzll!)(j=0Lj(ξ,η)zjj!)=j=0(l=0j(jl)Bl,λLjl(ξ,η))zjj!.Comparing the coefficients of zjj!, we get (Equation22).

Corollary 2.1

For η=0 in (Equation19), we have (23) Bj,λ(ξ)=l=0j(jl)Bjl,λξl.(23)

Theorem 2.2

Let j0. Then (24) LBj(ξ,η|λ)=l=0j(jl)(1)ll!l+1λlLBjl(ξ,η|λ).(24)

Proof.

Form (Equation19), we have (25) log(1+λz)1λez1eξzC0(ηz)=(log(1+λzλz)(zez1)eξzC0(ηz)=(l=0(1)ll+1λlzl)(j=0LBj(ξ,η)zjj!)=j=0(l=0j(jl)(1)ll!l+1λlLBjl(ξ,η))zjj!.(25) In view of (Equation19) and (Equation25), we get the result (Equation24).

Corollary 2.2

For η=0 in Theorem 2.2, we get (26) Bj,λ(ξ)=l=0j(jl)(1)ll!l+1λlBjl(ξ).(26)

Theorem 2.3

Let j0. Then (27) LBj(ξ,η|λ)=l=0j(jl)LBjl(ξ,η)λlDl(0).(27)

Proof.

Using (Equation11) and (Equation19), we have (28) j=0LBj(ξ,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)=(zez1)eξzC0(ηz)(log(1+λzλz)=(j=0LBj(ξ,η)zjj!)(l=0Dl(0)(λz)ll!)=j=0(l=0j(jl)LBjl(ξ,η)λlDl(0))zjj!.(28) In view of (Equation19) and (Equation28), we get the result (Equation27).

Corollary 2.3

On taking η=0 in Theorem 2.3, we acquire (29) Bj,λ(ξ)=l=0j(jl)Bjl(ξ)λlDl(0).(29)

Theorem 2.4

Let j0. Then (30) l=0j(jl)(ζ)lLBjl(ξ,η|λ)=l=0j(jl)Dl(ζ)λlLBjl(ξ,η).(30)

Proof.

Consider Equation (Equation19), we have (31) j=0LBj(ξ,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)(1+z)ζj=0LBj(ξ,η|λ)zjj!=(zez1)(log(1+λzλz)(1+z)ζeξzC0(ηz)=l=0Dl(ζ)(λz)ll!j=0LBj(ξ,η)zjj!=j=0(l=0j(jl)LBjl(ξ,η)Dl(ζ)λl)zjj!.(31) On the other hand, we have (32) l=0(ζ)lzll!j=0LBj(ξ,η)zjj!=j=0(l=0j(jl)LBjl(ξ,η)(ζ)l)zjj!.(32) Therefore, by (Equation31) and (Equation32), we get the result (Equation30).

Theorem 2.5

Let j0. Then (33) LBj(ξ,η)=l=0j(jl)λlbl,λ(0)LBjl(ξ,η|λ).(33)

Proof.

By using (Equation9) and (Equation19), we note that (34) log(1+λz)1λez1eξzC0(ηz)=j=0LBj(ξ,η|λ)zjj!zez1eξzC0(ηz)=(λzlog(1+λz))(j=0LBj(ξ,η|λ)zjj!)zez1eξzC0(ηz)=(l=0bl,λ(0)λlzll!)(j=0LBj(ξ,η|λ)zjj!)=j=0(l=0j(jl)λlbl,λ(0)LBjl(ξ,η|λ))zjj!.(34) Therefore, by (Equation20) and (Equation34), we get the result (Equation33).

Theorem 2.6

Let j0 and dN. Then (35) LBj(ξ,η|λ)=dj1l=0d1LBj,λ/d(l+ξd,η).(35)

Proof.

From (Equation19) in the form (36) j=0LBj(ξ,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)=log(1+λz)1λedz1l=0d1e(l+ξ)zC0(ηz)=j=0(dj1l=0d1LBj,λ/d(l+ξd,η))zjj!.(36) By (Equation19) and (Equation36), we get (Equation35).

Corollary 2.4

Let j0 and dN, we have (37) Bj,λ(ξ)=dj1l=0d1Bj,λ/d(l+ξd).(37)

Theorem 2.7

Let j0. Then (38) LBj(ξ,η|λ)=k=0jl=0k(jk)(ξ)lS2(k,l)LBjk(0,η|λ).(38)

Proof.

From (Equation19), we have (39) j=0LBj(ξ,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)=log(1+λz)1λez1C0(ηz)(ez1+1)ξ=j=0LBj(0,η|λ)zjj!l=0(ξ)l1l!(ez1)l=j=0LBj(0,η|λ)zjj!l=0(ξ)lk=lS2(k,l)zkk!=j=0LBj(0,η|λ)zjj!k=0l=0k(ξ)lS2(k,l)zkk!=j=0(k=0jl=0k(jk)(ξ)lS2(k,l)LBjk(0,η|λ))zjj!.(39) Comparing the coefficients of z, we get (Equation38).

Theorem 2.8

Let j0. Then (40) LBj(ξ+r,η|λ)=k=0jl=0k(jk)(ξ)lS2(r)(k+r,l+r)LBjk(0,η|λ).(40)

Proof.

By changing ξ by ξ+r in (Equation19) and using (Equation18), we have (41) j=0LBj(ξ+r,η|λ)zjj!=log(1+λz)1λez1eξzC0(ηz)eαt=log(1+λz)1λez1C0(ηz)erz(ez1+1)ξ=j=0LBj(0,η|λ)zjj!erzl=0(ξ)l1l!(ez1)l=j=0LBj(0,η|λ)zjj!erzl=0(ξ)lk=lS2(k,l)zkk!=j=0LBj(0,η|λ)zjj!k=0l=0k(ξ)lS2(r)(k+r,l+r)zkk!=j=0(k=0jl=0k(jk)(ξ)lS2(r)(k+r,l+r)LBjk(0,η|λ))zjj!.(41) In view of (Equation19) and (Equation41), we obtain the result (Equation40).

Theorem 2.9

Let j0. Then (42) LBq+l(ζ,η|λ)=j,p=0q,l(qj)(lp)(ζξ)j+pLBq+lpj(ξ,η|λ).(42)

Proof.

Replacing z with z + u in (Equation19), we get (43) log(1+λ(z+u))1λez+u1C0(η(z+u))=eξ(z+u)q,l=0LBq+l(η,ξ|λ)zqq!ull!, (see[24]).(43) Changing ξ by ζ in the above equation, we get (44) e(ζξ)(z+u)q,l=0LBq+l(ξ,η|λ)zqq!ull!=q,l=0LBq+l(ζ,η|λ)zqq!ull!.(44) (45) N=0[(ζξ)(z+u)]NN!q,l=0LBq+l(ξ,η|λ)zqq!ull!=q,l=0LBq+l(ζ,η|λ)zqq!ull!.(45) By using Lemma [Citation24], we have (46) N=0f(N)(ξ+η)NN!=j,m=0f(j+m)ξjj!ηmm!,(46) (47) j,p=0(ζξ)j+pzjupj!p!q,l=0LBq+l(ξ,η|λ)zqq!ull!=q,l=0LBq+l(ζ,η|λ)zqq!ull!.(47) (48) q,l=0j,p=0q,l(ζξ)j+pj!p!LBq+ljp(ξ,η|λ)zq(qj)!ul(lp)!=q,l=0LBq+l(ζ,η|λ)zqq!ull!.(48) Equating the like powers of z and u in the above equation, we get the required result.

3. General identities

In our previous articles (Pathan and Khan [Citation24] and Haroon and Khan [Citation4] and Khan et al. [Citation14–16]), it was shown that symmetric identities for Hermite-based generalized polynomials unify many properties and identities of Hermite–Bernoulli and Hermite–Euler polynomials. In this section, we give general symmetric identities for partially degenerate Laguerre–Bernoulli polynomials of the first kind LBj(ξ,η|λ) by applying the generating functions (Equation10) and (Equation19).

Theorem 3.1

Let a,bR with ab and j0. Then (49) l=0j(jl)ajlblLBjl(bξ,bη|λ)LBl(aξ,aη|λ)=l=0j(jl)bjlalLBjl(aξ,aη|λ)LBl(bξ,bη|λ).(49)

Proof.

Suppose (50) A(z)=(log(1+λaz)1λ)(log(1+λbz)1λ)(eaz1)(ebz1)e(a+b)ξzC0(abηz)C0(abηz)(50) (51) A(z)=j=0(l=0j(jl)ajlblLBjl(bξ,bη|λ)LBl(aξ,aη|λ))zjj!.(51) On the similar lines we can show that (52) A(z)=j=0(l=0j(jl)bjlalLBjl(aξ,aη|λ)LBl(bξ,bη|λ))zjj!.(52) In view of (Equation51) and (Equation52), we arrive at the desired result.

Corollary 3.1

By setting b = 1 in Theorem 3.1, we get l=0j(jl)ajlLBjl(ξ,η|λ)LBl(aξ,aη|λ)=l=0j(jl)alLBjl(aξ,aη)LBl(r)(ξ,η).

Theorem 3.2

Let a,bR with ab and j0. Then (53) l=0ji=0a1p=0b1(jl)ajlblLBjl(bξ+bai+p,bη|λ)LBl(aζ,aη,|λ)=l=0jp=0a1i=0b1(jl)bjlalLBjl(aξ+abi+p,aη|λ)LBl(bζ,bη|λ).(53)

Proof.

Let (54) B(z)=(log(1+λaz)1λ)(log(1+λbz)1λ)(eabz1)(eaz1)2(ebz1)2eab(ξ+ζ)zC0(abηz)C0(abηz)=log(1+λaz)1λeaz1eabξzC0(abηz)i=0a1ebzilog(1+λbz)1λebz1eabζzC0(abηz)p=0b1eazp.(54) (55) B(z)=j=0(l=0ji=0a1p=0b1(jl)ajlblLBjl(bξ+bai+p,bη|λ)LBl(aζ,aη,|λ))zjj!.(55) On the other hand, we have (56) B(z)=j=0(l=0jp=0a1i=0b1(jl)bjlalLBjl(aξ+abi+p,aη|λ)LBl(bζ,bη|λ))zjj!.(56) Therefore, by (Equation55) and (Equation56), we get (Equation53).

Theorem 3.3

Let a,bR with ab and j0. Then (57) l=0ji=0a1p=0b1(jl)ajlblLBjl(bξ+bai,bη|λ)LBl(aζ+abp,aη|λ)=l=0jp=0a1i=0b1(jl)bjlalLBjl(aξ+abi,aη|λ)LBl(bζ+bap,bη|λ).(57)

Proof.

The proof is analogous to Theorem 3.2, but we need to write Equation (Equation54) in the form (58) B(z)=j=0(l=0ji=0a1p=0b1(jl)ajlblLBjl(bξ+bai,bη|λ)LBl(aζ+abp,aη|λ))zjj!.(58) On the other hand Equation (Equation54) can be shown equal to (59) B(z)=j=0(l=0jp=0a1i=0b1(jl)bjlalLBjl(aξ+abi,aη|λ)LBl(bζ+bap,bη|λ))zjj!.(59) By (Equation58) and (Equation59), we get (Equation57).

Now, we prove the following symmetric identity involving sum of integer powers Sp(j) given by Equation (Equation17) and partially degenerate Laguerre–Bernoulli polynomials of the first kind LBj(ξ,η|λ).

Theorem 3.4

Let a,bR with ab and j0. Then (60) k=0j(jk)ajkbkLBjk(bξ,bζ|λ)i=0k(ki)Si(b1)LBki(aη,aζ|λ)k=0j(jk)bjkakLBjk(aξ,aζ|λ)i=0k(ki)Si(a1)LBki(bη,bζ|λ).(60)

Proof.

Consider C(z)=(log(1+λaz)1λ)(log(1+λbz)1λ)(eabz1)(eaz1)2(ebz1)2eab(ξ+η)zC0(abζz)C0(abζz)=log(1+λaz)1λeaz1eabξzC0(abζz)eabz1eaz1log(1+λbz)1λebz1eabηzC0(abζz)=j=0LBj(bξ,bζ|λ)(az)jj!i=0Si(b1)zii!k=0LBk(aη,aζ|λ)(bz)kk!C(z)=j=0(k=0j(jk)ajkbkLBjk(bξ,bζ|λ)i=0k(ki)Si(b1)LBki(aη,aζ|λ))zjj!.On the other hand, we have C(z)=j=0(k=0j(jk)bjkakLBjk(aξ,aζ|λ)i=0k(ki)Si(a1)LBki(bη,bζ|λ))zjj!.By comparing the coefficients of zj on the right-hand sides of the last two equations, we obtain the result (Equation60).

4. Concluding remarks

In this paper, we have presented the generalized partially degenerate Laguerre–Bernoulli polynomials of the first kind and discussed, in particular, some interesting series representations. We have deduced some relevant properties by using the structure and the relations satisfied by the recently generalized Laguerre polynomials incorporates the definition of partially degenerate Laguerre–Bernoulli polynomials of the first kind and a preliminary study of these polynomials. We derived some theorems on implicit summation formulae for partially degenerate Laguerre–Bernoulli polynomials of the first kind LBj(ξ,η|λ) and their special cases are given. Finally, we derived symmetry identities for type partially degenerate Laguerre–Bernoulli polynomials of the first kind.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Kim T. q-Volkenborn integration. Russ J Math Phys. 2002;9(3):288–299.
  • Kim T. An invariant p-adic q-L-functions. Kyushu J Math. 1994;48(1):73–86.
  • Dolgy DV, Khan WA. A note on type two degenerate poly-Changhee polynomials of the second kind. Symmetry. 2021;13(579):1–12.
  • Haroon H, Khan WA. Degenerate Bernoulli numbers and polynomials associated with hermite polynomials. Commun Korean Math Soc. 2018;33(2):651–669.
  • Dattoli G, Torre A. Operational methods and two variable Laguerre polynomials. Atti Accad Sci Torino Cl Sci Fis Mat Natur. 1998;132:3–9.
  • Andrews LC. Special functions for engineers and mathematicians. New York: Macmillan. Co.; 1985.
  • Agarwal P, Qi F, Chand M, et al. Certain integrals involving the generalized hypergeometric functions and the Laguerre polynomials. J Comput Appl Math. 2017;313(15):307–317.
  • Kwon JK, Rim SH, Park JW. A note on the Appell type Daehee polynomials. Global J Pure Appl Math. 2015;11(5):2745–2753.
  • Khan WA, Muhiuddin G, Muhyi A, et al. Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications. Adv Differ Equ. 2021;2021(420):1–18.
  • Khan WA, Muhyi A, Ali R, et al. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021;6(11):12680–12697.
  • Qi F, Dolgy DV, Kim T. On the partially degenerate Bernoulli polynomials of the first kind. Global J Pure Appl Math. 2015;11(4):2407–2412.
  • Bohner M, Cuchta T. The generalized hypergeometric difference equation. Demonstr Math. 2018;51:62–75.
  • Border AZ. The r-Stirling numbers. Discr Math. 1984;49(3):241–259.
  • Khan WA, Araci S, Acikgoz M, et al. A new class of partially degenerate hermite-Genocchi polynomials. J Nonlinear Sci Appl. 2017;10(9):5072–5081.
  • Khan WA, Pathan MA. On generalized Lagrange-Hermite-Bernoulli and related polynomials. Acta Et Comment Univ Tartu Math. 2019;23(2):211–224.
  • Khan WA, Haroon H. Some symmetric identities for the generalized Bernoulli, euler and Genocchi polynomials associated with hermite polynomials. Springer Plus. 2016;5:1–21.
  • Khan WA, Acikgoz M, Duran U. Note on the type 2 degenerate multi-poly-Euler polynomials. Symmetry. 2020;12:1–10.
  • Khan WA, Ali R, Alzobydi KAH, et al. A new family of degenerate poly-Genocchi polynomials with its certain properties. J Funct Spaces. 2021;2021:Article ID 6660517, 8 pages.
  • Muhiuddin G, Khan WA, Duran U. Al-Kadi D: some identities of the multi poly-Bernoulli polynomials of complex variable. J Funct Spaces. 2021;2021:Article ID 7172054, 8 pages.
  • Muhiuddin G, Khan WA, Duran U. Two variable type 2 fubini polynomials. Mathematics. 2021;9(281):1–13.
  • Muhiuddin G, Khan WA, Muhyi A, et al. Some results on type 2 degenerate poly-Fubini polynomials and numbers. Comput Model Eng Sci. 2021;29(2):1051–1073.
  • Muhiuddin G, Khan WA, Al-Kadi D. Construction on the degenerate poly-Frobenius–Euler polynomials of complex variable. J Funct Space. 2021;2021:Article ID 3115424, 9 pages.
  • Irmak H, Agrawal P, Agarwal RP. The complex error functions and various extensive results together with implications pertaining to certain special functions. Turk J Math. 2022;46:662–674.
  • Pathan MA, Khan WA. Some implicit summation formulas and symmetric identities for the generalized hermite-Bernoulli polynomials. Mediterr J Math. 2015;12:679–695.