677
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Asymptotic series solution of variational stokes problems in planar domain with crack-like singularity

ORCID Icon &
Pages 448-479 | Received 17 Mar 2022, Accepted 25 May 2022, Published online: 18 Jun 2022

ABSTRACT

A class of nonlinear variational problems describing incompressible fluids and solids by stationary Stokes equations given in a planar domain with a crack (infinitely thin flat plate in fluids) is considered. Based on the Fourier asymptotic analysis, general analytical solutions are obtained in polar coordinates as the power series with respect to the distance to the crack tip. The logarithm terms and angular functions are accounted in the asymptotic expansion using recurrence relations. Then boundary conditions imposed between the opposite crack faces in the sector of angle 2π determine admissible exponents and parameters in the power series. For the specific conditions of Dirichlet, Neumann, impermeability, non-penetration and shear crack, the principal asymptotic terms are derived, which verify the singular behaviour. In particular, the analytical solution answers the questions of a square-root singularity at the crack tip and the presence of log-oscillations of variational solutions for the Stokes problems.

AMS CLASSIFICATIONS:

1. Introduction

The Stokes system can describe stationary flow of incompressible fluids [Citation1] as well as incompressible linearly elastic solids that are subject to the divergence-free condition [Citation2]. We refer to suitable qualitative properties of solutions given in Ref. [Citation3] and related regularity results in Ref. [Citation4,Citation5] for dual strategies solving the Stokes problem. Motivated by applications to fracture mechanics, in our study we are interested in the presence of a crack in a reference domain (see the variational theory of crack problems in the monograph by Khludnev and Kovtunenko [Citation6]). For fluids, the discontinuity may be suitable when simplifying aeroplane wings to infinitely thin flat plates. This research has further important extensions to nonlinear continuum mechanics [Citation7,Citation8], shape optimization [Citation9–11], overdetermined [Citation12] and inverse problems [Citation13].

The main question of crack problems consists in finding a singularity at the crack tip. The generic singularity is of power type with respect to the distance to the crack tip and may contain logarithmic terms, whose presence or absence is of especial importance for engineers. If we consider linear elastic boundary value problems for cracked configurations, then we have the Williams series solution [Citation14]. The boundary value problems analyzed in the paper have long history. Highlighting questions related to the singularity in the vicinity of the crack we cite [Citation15], the respective approaches use regular and singular perturbations [Citation16–18], integral Fourier and Mellin transforms [Citation19]. Here we focus on asymptotic series solution for incompressible continua given in a planar domain corresponding to the sector of angle 2π.

The crack singularities for general elliptic systems in planar domains were analyzed in Ref. [Citation20] in dependence of boundary conditions. Thus, the Lamé system describing isotropic bodies with a stress-free crack (the homogeneous Neumann boundary condition) obeys the classic square-root singularity without logarithms. It is worth noting that Stokes equations correspond to the limit case of the Lamé equations when the Poisson ratio ν0.5 (hence the Lamé parameter λ). Setting ν=0.5 in asymptotic formulas was suggested in Ref. [Citation21] to get the displacement appropriate for the special case of an incompressible body. However, in the limit state of Stokes equations under non-penetration conditions, log-oscillations may occur for high-order asymptotic terms. In Ref. [Citation22, Chapters 5 and 6], Stokes problems in conical domains were investigated with respect to its eigenvalues and generalized eigenvalues generated by Dirichlet and Neumann conditions.

Commonly, boundary conditions are incorporated into the operator pencil for differential equations in order to determine admissible exponents and parameters in the power series after solving this eigenvalue problem [Citation3,Citation4,Citation20,Citation22]. This approach is highly dependent on the specific choice of conditions imposed on the boundary. In contrast, we obtain first a general asymptotic solution for the Stokes equations using Fourier asymptotic expansion and recurrence relations for logarithmic terms and angular functions. Then we can specify coefficients in the power series for every kind of boundary conditions imposed between the opposite crack faces, even for nonlinear ones. For engineers, it is important to note that we establish: if log-oscillations occur in the power series, or not. In this way, we provide the principal asymptotic terms for the condition of Dirichlet, Neumann, impermeability, non-penetration and shear crack presented next.

In the domain with crack Ωc, let unknown displacement (velocity for fluids) vector u and scalar pressure p satisfy the homogeneous Stokes equations: (1) μΔu+p=0,divu=0,(1) where the shear modulus μ=E/3 and Young's modulus E>0. This constitutes the Cauchy stress τ in terms of the linearized strain ε and pressure p as (2) τ=2με(u)pI,ε(u)=12(u+u),(2) where I is the identity transformation. At the crack Γc with a normal vector n, we can distinguish traces of the discontinuous functions u, τ, and p across the opposite crack faces Γc±, thus the jump: (3) [[u]]:=u|Γc+u|Γc,[[τ]]:=τ|Γc+τ|Γc,[[p]]:=p|Γc+p|Γc,(3) and the mean: (4) {{u}}:=12(u|Γc++u|Γc),{{τ}}:=12(τ|Γc++τ|Γc),{{p}}:=12(p|Γc++p|Γc).(4) Using (Equation2)–(Equation4), we set the following boundary conditions at Γc for the stick (homogeneous Dirichlet): (5) [[u]]={{u}}=0,(5) impermeability (mixed homogeneous Dirichlet–Neumann): (6) [[un]]={{un}}=0,[[τ(τn)n]]={{τ(τn)n}}=0,(6) stress-free crack (homogeneous Neumann): (7) [[τ]]={{τ}}=0,(7) non-penetration (complementarity): (8) [[τ(τn)n]]={{τ(τn)n}}=0,[[τn]]=0,[[un]]0,τn0,[[un]](τn)=0,(8) and shear crack (transmission with slip): (9) [[τ(τn)n]]={{τ(τn)n}}=0,[[τn]]=[[un]]=0.(9) The power series solution for the Stokes equation (Equation1) when expressed in polar (r,θ)-coordinates is found in the general form of sum (10) u(r,θ)=γRrγm=0M(γ)(lnr)M(γ)m(M(γ)m)!Ψm(γ,θ),p(r,θ)=γRrγ1m=0M(γ)(lnr)M(γ)m(M(γ)m)!Φm(γ,θ),(10) where the angular functions are determined by the recurrence relations for m=1,,M(γ): (11) Ψ0=l=14Ul0ψl(γ,θ),Ψm=l=14Ulmψl(γ,θ)i=1m(1)ii!iΨmiγi,(11) (12) Φ0=l=14Pl0ϕl(γ,θ),Φm=l=14Plmϕl(γ,θ)i=1m(1)ii!iΦmiγi,(12) with free coefficients Ulm,PlmR. The four eigenvectors ψ1,,ψ4 and ϕ1,,ϕ4 (where ϕ1=ϕ2=0) of the operator pencil are found from the condition that for every l=1,,4 functions uγ=rγψl and pγ=rγ1ϕl solve the homogeneous Stokes equation (Equation1).

Inserting ansatz (Equation10)–(Equation12) into the boundary conditions (Equation5)–(Equation9) as θ=π and θ=π, for every condition we determine the admissible eigenvalues γ, the presence of generalized eigenvectors by means of M(γ), and coefficients U1m,,U4m,P3m,P4m for m=0,1,. The important observation is that, if only trivial Ψ0=0 and Φ0=0 are possible in (Equation11) and (Equation12), then Ψ1=0 and Φ1=0 too, thus M(γ)=0, and there is no logarithms. Otherwise, if non-trivial Ψ0,Φ0,Ψ1,Φ1 exist, then natural number M(γ)1 may be arbitrary.

The energy H1-solution u excepting possible constant u(0) restricts to γ>0. In particular, we found the crack-tip singular of energy solutions (the principal asymptotic terms) according to the following expansions as r for the boundary conditions of Dirichlet (Equation5), mixed Dirichlet–Neumann (Equation6), Neumann (Equation7) and non-penetration (Equation8): (13) u(r,θ)u(0)=r1/2Ψ0(12,θ)+O(r)(13) using the Landau notations, whereas in the case (Equation9) of shear crack: (14) u(r,θ)u(0)=rΨ0(1,θ)+O(r2).(14) The structure of the paper is as follows. In Section 2, we reformulate in polar coordinates the boundary value problems for the Stokes model (Equation1), (Equation2) under the boundary conditions (Equation5)–(Equation9) at the crack. Introducing proper feasible sets, we prove weak solutions to the corresponding variational Stokes problems in bounded domains with cracks. Based on the Fourier asymptotic expansion, in Section 3, we justify rigorously the power series solution (Equation10)–(Equation12) and derive explicitly the eigenvectors ψ1,,ψ4,ϕ3,ϕ4. In Section 4, the asymptotic expansion is specified in a sector of angle 2π around the crack tip for every boundary conditions (Equation5)–(Equation9) by means of the eigenvalues γ, eigenvectors Ψ0,Φ0, and generalized eigenvectors Ψ1,Φ1. This allows us to write the principal asymptotic terms in (Equation13) and (Equation14) and validate singular properties of the solution. Some concluding remarks and further perspectives are outlined in Section 5.

2. Variational Stokes problems

We begin with the geometric description of a planar sectorial domain around a crack tip. Let ΩR2 be a star-shaped domain with respect to the origin 0. Let it have a Lipschitz continuous boundary Ω, which consists of mutually disjoint parts ΓN and ΓD, and the normal vector n outward from Ω. We assume that the origin 0 coincides with the tip of a semi-infinite direct crack, whose intersection with Ω forms a line segment Γc. The cracked domain Ωc:=ΩΓc¯ implies a finite part of sector of angle 2π bounded by Ω. We introduce the polar coordinates r>0 and θ(π,π) such that the upper and lower crack faces correspond to θ=±π, respectively, as illustrated in Figure .

Figure 1. Example geometry of a planar sectorial domain Ωc with crack Γc.

Figure 1. Example geometry of a planar sectorial domain Ωc with crack Γc.

In the sectorial domain Ωc, we look for unknown vector u=(ur,uθ)(r,θ) and scalar p(r,θ) functions. They constitute the linearized strain ε(r,θ) and the Cauchy stress τ(r,θ) defined according to (Equation2), which in the polar coordinates are represented by symmetric tensors in Rsym2×2 as (15) τ=(τrrτrθτrθτθθ)=(2μεrr(u)p2μεrθ(u)2μεrθ(u)2μεθθ(u)p),ε(u)=(εrr(u)εrθ(u)εrθ(u)εθθ(u)),(15) where the strain components are (16) εrr(u)=ur,r,εrθ(u)=12(uθ,r+1rur,θ1ruθ),εθθ(u)=1ruθ,θ+1rur,(16) using the convention for partial derivatives (),r=()/r and (),θ=()/θ.

Applying the constitutive relations (Equation15), the Stokes equation (Equation1) turn into the equilibrium equations (17) divτ=0,trε(u)=0inΩc,(17) where the identity for the trace trε(u)=divu was used, such that in polar coordinates (18) τrr,r+1rτrr+1rτrθ,θ1rτθθ=0,τrθ,r+2rτrθ+1rτθθ,θ=0,εrr(u)+εθθ(u)=0.(18) At the outer boundary Ω, we endow (Equation17) with the mixed, homogeneous Dirichlet–inhomogeneous Neumann boundary conditions (19) u=0on ΓD,τn=gon ΓN(19) for a prescribed force gL2(ΓN)2, where τn stands for boundary traction.

Next we set admissible function spaces for the Stokes problems (Equation17), (Equation19) under boundary conditions (Equation5)–(Equation9) at the crack Γc. Taking into account the no-slip condition in (Equation19), we introduce the Sobolev space (20) V(Ωc):={uH1(Ωc)2|u=0on ΓD}.(20) Admissible at crack functions are restricted in a feasible set KV(Ωc) meeting the Dirichlet case (Equation5) as (21) K={uV(Ωc)|[[u]]={{u}}=0on Γc},(21) the case of impermeability (Equation6) as (22) K={uV(Ωc)|[[uθ]]={{uθ}}=0on Γc},(22) respectively in the Neumann case (Equation7) (23) K=V(Ωc),(23) the case of non-penetration (Equation8) implies (24) K={uV(Ωc)|[[uθ]]0on Γc},(24) and the shear crack from (Equation9) reads (25) K={uV(Ωc)|[[uθ]]=0on Γc}.(25) In all cases (Equation21)–(Equation25), the topological set K yields a convex closed cone.

For stress tensors τL2(Ωc;Rsym2×2) such that divτL2(Ωc)2, the following Green's formula takes place using (Equation18), and the notation from (Equation3) and (Equation4): (26) Ωc([(rτrr),r+τrθ,θτθθ]vr+[(rτrθ),r+τθθ,θ+τrθ]vθ)drdθ=Ωc(τrrεrr(v)+2τrθεrθ(v)+τθθεθθ(v))rdrdθΓNτnvdS+Γc([[τrθ]]{{vr}}+{{τrθ}}[[vr]]+[[τθθ]]{{vθ}}+{{τθθ}}[[vθ]])rdr(26) for smooth functions v=(vr,vθ) such that v=0 on ΓD, and the strain operator ε(v) defined according to (Equation16). After integration of Equation (Equation17) with the help of constitutive relations (Equation15), boundary conditions (Equation19) and Green's formula (Equation26), we arrive at the variational inequality: find (u,p)K×L2(Ωc) satisfying (27) Ωc((2μεrr(u)p)εrr(vu)+4μεrθ(u)εrθ(vu)+(2μεθθ(u)p)εθθ(vu))rdrdθΓNg(vu)dS(27) for all test functions vK. This system is completed with the weak form of incompressibility as (28) Ωc(εrr(u)+εθθ(u))qrdrdθ=0(28) for all test functions qL2(Ωc). Conversely, for the smooth solution (u,p)H2(Ωc)2×H1(Ωc), the boundary conditions on the stress in (Equation5)–(Equation9) follow from the variational inequality (Equation27) after applying Green's formula (Equation26).

Proposition 2.1

(Well-posedness of the weak Stokes problems). Let KV(Ωc) be a generic feasible set, which is convex and closed (e.g. (Equation21)–(Equation25)). Then there exists a pair (u,p)K×L2(Ωc), the stress and strain τ,εL2(Ωc;Rsym2×2) determined from (Equation15) and (Equation16), which solve uniquely the variational relations (Equation27) and (Equation28).

Proof.

In the proof we recall the well-known facts from the theory of mixed variational problems for the Stokes equations (see, e.g. Ref. [Citation5]). The weak formulation (Equation27) and (Equation28) gives rise to the Lagrangian function L:V(Ωc)×L2(Ωc)R (the free energy), which is well-defined by (29) L(u,p)=Ωc((2μεrr(u)p)εrr(u)+4μεrθ(u)εrθ(u)+(2μεθθ(u)p)εθθ(u))rdrdθΓNgudS.(29) The mapping [uL(u,p)] in (Equation29) is quadratic, convex and coercive due to Poincare inequality provided by the Dirichlet condition in (Equation20) such that (30) L(u,p)cPuH1(Ωc)22c(pL2(Ωc)+gL2(ΓN)2)uH1(Ωc)2+asuH1(Ωc)2.(30) The operator [utrε]:V(Ωc)L2(Ωc) in (Equation18) is surjective. Therefore, the inf-sup condition (see Ref. [Citation1]) for the linear mapping [pL(u,p)] in (Equation29) follows directly from the definition of dual norm in L2(Ωc): (31) sup0uH1(Ωc)21uH1(Ωc)2Ωc(εrr(u)+εθθ(u))prdrdθcLBBpL2(Ωc),cLBB>0.(31) As the consequence of Ladyzhenskaya–Babuška–Brezzi–Nečas minimax theorem, there exists a unique saddle point (u,p)K×L2(Ωc) such that (32) L(u,q)L(u,p)L(v,p)(32) for all test functions (v,q)K×L2(Ωc). After differentiation with respect to u and p, the optimality conditions for (Equation32) lead to the variational inequality (Equation27) and Equation (Equation28). The proof is completed.

Evidently, the assertion of Proposition 2.1 holds for much more general geometries than assumed at the beginning of this section. In the subsequent sections, we use these geometric assumptions for construction of a semi-analytic solution for the variational Stokes problems locally in a neighbourhood of the crack tip.

3. Power series solution in the general form

To write the equilibrium equations in terms of u, we substitute the stress τ from (Equation15) and strain ε(u) from (Equation16) into the first two equations in (Equation18), and use the incompressibility εrr(u)+εθθ(u)=0 such that 2μ(εθθ,r(u)1rεrr(u)1rεrθ,θ(u)+1rεθθ(u))+p,r=0,2μ(εrθ,r(u)+2rεrθ(u)1rεrr,θ(u))1rp,θ=0.Due to the symmetry of mixed derivatives, differentiating (Equation16) yields two compatibility conditions εθθ,r(u)=1rεrr(u)+2rεrθ,θ(u)1rεθθ(u)1r2ur,θθ+1r2uθ,θ,1rεrr,θ(u)=2εrθ,r(u)+2rεrθ(u)uθ,rr.Inserting these conditions justifies the equilibrium equations as (33) μrη(u),θ+p,r=0,μη(u),r1rp,θ=0,where η(u):=uθ,r+1ruθ1rur,θ.(33) In its turn, the incompressibility condition in terms of u reads (34) ur,r+1rur+1ruθ,θ=0.(34) We look for the solution of Stokes Equations (Equation33) and (Equation34) by the Fourier series (Equation10) with respect to powers γ (see Ref. [Citation22]). For every fixed γR, we consider the asymptotic terms (35) uγ(r,θ)=rγm=0M(lnr)Mm(Mm)!Ψm(γ,θ),pγ(r,θ)=rγ1m=0M(lnr)Mm(Mm)!Φm(γ,θ)(M0)(35) with unknown angular vector Ψ0,,ΨM and scalar Φ0,,ΦM functions. Here, the γ1-power for the pressure is due to compatibility of the terms in the stress τ entering the constitutive equation (Equation15). Our task needs few auxiliary lemmas.

Lemma 3.1

(Recurrence equations for angular functions). If the angular functions satisfy the following recurrence equations: (36) (γ+1)Ψr0+Ψθ,θ0=0,(γ+1)Ψrm+Ψθ,θm+Ψrm1=0for m=1,,M,(36) (37) μ[(γ+1)Ψθ,θ0Ψr,θθ0]+(γ1)Φ0=0,μ[(γ+1)Ψθ,θmΨr,θθm+Ψθ,θm1]+(γ1)Φm+Φm1=0for m=1,,M,(37) (38) μ(γ1)[(γ+1)Ψθ0Ψr,θ0]Φ,θ0=0,μ[(γ21)Ψθ1(γ1)Ψr,θ1+2γΨθ0Ψr,θ0]Φ,θ1=0,μ[(γ21)Ψθm(γ1)Ψr,θm+2γΨθm1Ψr,θm1+Ψθm2]Φ,θm=0for m=2,,M,(38) then ansatz (Equation35) fulfils the Stokes equations (Equation33) and (Equation34).

Proof.

For differentiation of the power series with respect to r, we exploit the following calculus: (39) u,rγ=rγ1(γm=0M(lnr)Mm(Mm)!Ψm+m=0M1(lnr)Mm1(Mm1)!Ψm)=rγ1((lnr)MM!γΨ0+m=1M(lnr)Mm(Mm)!(γΨm+Ψm1)),(39) where shifting of the summation index was used. Inserting ansatz (Equation35) into the incompressibility equation (Equation34), after the differentiation of uγ with respect to θ and r as in (Equation39), gathering like terms gives (40) ur,rγ+1rurγ+1ruθ,θγ=rγ1((lnr)MM![(γ+1)Ψr0+Ψθ,θ0]+m=1M(lnr)Mm(Mm)![(γ+1)Ψrm+Ψθ,θm+Ψrm1])(40) and necessitates relations (Equation36).

Akin to (Equation40), we calculate the expression of η(uγ):=uθ,rγ+1ruθγ1rur,θγ as (41) η(uγ)=rγ1((lnr)MM![(γ+1)Ψθ0Ψr,θ0]+m=1M(lnr)Mm(Mm)![(γ+1)ΨθmΨr,θm+Ψθm1]),(41) and, similarly to (Equation39), its derivative with respect to r as (42) η(uγ),r=rγ2((lnr)MM!(γ1)[(γ+1)Ψθ0Ψr,θ0]+(lnr)M1(M1)![(γ21)Ψθ1(γ1)Ψr,θ1+2γΨθ0Ψr,θ0]+m=2M(lnr)Mm(Mm)![(γ21)Ψθm(γ1)Ψr,θm+2γΨθm1Ψr,θm1+Ψθm2]).(42) Inserting into equilibrium equation (Equation33), the series for pγ from (Equation35) and its derivative with respect to r as p,rγ=rγ2((lnr)MM!(γ1)Φ0+m=1M(lnr)Mm(Mm)!((γ1)Φm+Φm1)),the series (Equation41) and (Equation42) for η(uγ), this provides respectively μrη(uγ),θ+p,rγ=rγ2((lnr)MM!{μ[(γ+1)Ψθ,θ0Ψr,θθ0]+(γ1)Φ0}+m=1M(lnr)Mm(Mm)!{μ[(γ+1)Ψθ,θmΨr,θθm+Ψθ,θm1]+(γ1)Φm+Φm1}),μη(uγ),r1rp,θγ=rγ2((lnr)MM!{μ(γ1)[(γ+1)Ψθ0Ψr,θ0]Φ,θ0}+(lnr)M1(M1)!{μ[(γ21)Ψθ1(γ1)Ψr,θ1+2γΨθ0Ψr,θ0]Φ,θ1}+m=2M(lnr)Mm(Mm)!{μ[(γ21)Ψθm(γ1)Ψr,θm+2γΨθm1Ψr,θm1+Ψθm2]Φ,θm}),which leads to (Equation37) and (Equation38) and completes the proof.

With the help of differentiation with respect to θ, we decouple the relations in Lemma 3.1 as follows.

Lemma 3.2

(Decoupled equations for angular functions). The recurrence equations (Equation36)–(Equation38) are equivalent to the following subsequent system of equations for {Φm}, {Ψrm}, and {Ψθm}: (43) Φ,θθ0+(γ1)2Φ0=0,Φ,θθ1+(γ1)2Φ1=2(γ1)Φ0,Φ,θθm+(γ1)2Φm=2(γ1)Φm1Φm2for m=2,,M,(43) (44) μ[Ψr,θθ0+(γ+1)2Ψr0]=(γ1)Φ0,μ[Ψr,θθ1+(γ+1)2Ψr1+2(γ+1)Ψr0]=(γ1)Φ1+Φ0,μ[Ψr,θθm+(γ+1)2Ψrm+2(γ+1)Ψrm1+Ψrm2]=(γ1)Φm+Φm1for m=2,,M,(44) (45) (γ+1)Ψr0+Ψθ,θ0=0,(γ+1)Ψrm+Ψθ,θm+Ψrm1=0for m=1,,M,(45) excluding non-zero constant values of the left-hand side in Equation (Equation38).

Proof.

Indeed, after differentiation of (Equation38) with respect to θ and using (Equation37), it follows Φ,θθm=(γ1)μ[(γ+1)Ψθ,θmΨr,θθm]+μ[2γΨθ,θm1Ψr,θθm1+Ψθ,θm2]=(γ1)2Φm2(γ1)Φm1Φm2for all m=0,,M supposing Φ1=Φ2=0, hence (Equation43). Inserting Ψθ,θm=(γ+1)ΨrmΨrm1 and Ψθ,θm1=(γ+1)Ψrm1Ψrm2 from (Equation36) into (Equation37) and setting Ψr1=Ψr2=0 yields (Equation44). The relations (Equation37) and (Equation45) coincide, constant in the left-hand side of (Equation38) due to the differentiation is excluded.

Since Equations (Equation43) and (Equation44) imply an inhomogeneous Sturm–Liouville problem for two eigenvalues γ+1 and γ1, its solutions can be constructed as a linear span of four eigenvectors (46) ϕ1(γ,θ)=cos(γ+1)θ,ϕ2(γ,θ)=sin(γ+1)θ,ϕ3(γ,θ)=cos(γ1)θ,ϕ4(γ,θ)=sin(γ1)θ(46) in the form of (Equation11) and (Equation12). For further use, we remind the properties of derivatives for (Equation46): (47) ϕ1,θ=(γ+1)ϕ2,ϕ2,θ=(γ+1)ϕ1,ϕ3,θ=(γ1)ϕ4,ϕ4,θ=(γ1)ϕ3,(47) (48) ϕ1,γ=θϕ2,ϕ2,γ=θϕ1,ϕ3,γ=θϕ4,ϕ4,γ=θϕ3,(48) formulas of the Sturm–Liouville operator applied to these functions: (49) ϕl,θθ+(γ+1)2ϕl=0for l=1,2,ϕl,θθ+(γ1)2ϕl=0for l=3,4,(49) and after differentiation with respect to γ: (50) ϕl,γθθ+(γ+1)2ϕl,γ=2(γ+1)ϕlfor l=1,2,ϕl,γθθ+(γ1)2ϕl,γ=2(γ1)ϕlfor l=3,4.(50)

Lemma 3.3

Recurrence formula of angular functions

The angular functions solving (Equation43)–(Equation45) for all m=0,,M are determined by the recurrence sequence (51) Φ0=l=34Pl0ϕl,Φm=l=34Plmϕli=1m(1)ii!iΦmiγi,(51) (52) Ψr0=l=14Ul0ϕl,Ψrm=l=14Ulmϕli=1m(1)ii!iΨrmiγi,(52) (53) Ψθ0=l=14U~l0ϕl,Ψθm=l=14U~lmϕli=1m(1)ii!iΨθmiγi,(53) with arbitrary 10 coefficients U1m,,U4m, U~1m,,U~4m, P3m,P4mR satisfying the six relations (54) 4μγUlm=(γ1)Plmfor l=3,4,(54) (55) U~1m=U2m,U~2m=U1m,(γ1)U~3m=(γ+1)U4m,(γ1)U~4m=(γ+1)U3m.(55)

The proof of Lemma 3.3 is leaded by induction over indexes i{0,,m} and given in Appendix A.

Based on auxiliary Lemmas 3.1–3.3, we formulate the main result of this section.

Theorem 3.1

(Power series solution to Stokes equations). The power series solution for the Stokes equations in polar coordinates (Equation18) has the general form of the sum over powers of r: (56) u(r,θ)=γRuγ,uγ(r,θ)=rγm=0M(γ)(lnr)M(γ)m(M(γ)m)!Ψm(γ,θ),p(r,θ)=γR{0}pγ,pγ(r,θ)=rγ1m=0M(γ)(lnr)M(γ)m(M(γ)m)!Φm(γ,θ),(56) where the angular functions are determined as m = 0, and for m=1,,M(γ) by the recurrence relations: (57) Ψ0=l=14Ul0ψl(γ,θ),Ψm=l=14Ulmψl(γ,θ)i=1m(1)ii!iΨmiγi,(57) (58) Φ0=l=34Pl0ϕl(γ,θ),Φm=l=34Plmϕl(γ,θ)i=1m(1)ii!iΦmiγi.(58) If the eigenvalues γ1, the coefficients U1m,U2m are free, and U3m,U4m,P3m,P4mR satisfy two relations (59) 4μγUlm=(γ1)Plmfor l=3,4,(59) the eigenvectors ψ1,,ψ4 are given according to ϕ1,,ϕ4 in (Equation46) by (60) ψ1=(ϕ1ϕ2),ψ2=(ϕ2ϕ1),ψ3=(ϕ3γ+1γ1ϕ4),ψ4=(ϕ4γ+1γ1ϕ3).(60) If γ=1, the coefficients U3m=U4m=0 and U1m,U2m are free, such that all Ψm in (Equation57) depend only on the eigenvectors ψ1 and ψ2 from (Equation60).

Proof.

Indeed, setting the ansatz in the form of power series (Equation56), formulas (Equation57)–(Equation60) follow straightforwardly from the relations (Equation51)–(Equation55), after solving Equation (Equation55) with respect to U~1m,,U~4m by division over γ10. If γ=1, we get U3m=U4m=0, and coefficients U~3m, U~4m in (Equation55) can be arbitrary. Since ϕ3=1 and ϕ4=0 as γ=1, the corresponding eigenvector components Ψrm=U4mϕ4=0 and Ψθm=U~4mϕ4=0 are trivial, whereas constant Ψrm=U3mϕ3=0 and Ψθm=U~3mϕ3=U~3m are excluded in Lemma 3.2 since do not satisfy Equations (Equation37) and (Equation38). If γ=0, then the pressure p00 due to (Equation59) is skipped from the series for p in (Equation56). The proof is completed.

It can be observed that if M(γ)=0 for fixed γ, then no logarithm terms occur in the expansion (Equation56), and the system (Equation57)–(Equation59) for angular functions consists of Ψ0 and Φ0 only. Otherwise, if M(γ)1, we have the log-oscillations in (Equation56). In this respect, the important criterion of log-oscillations is given next.

Corollary 3.1

(Criterion of log-oscillations). For fixed γR in the system (Equation57) and (Equation58) as m = 0, 1: (61) Ψ0=l=14Ul0ψl(γ,θ),Φ0=l=34Pl0ϕl(γ,θ),Ψ1=l=14Ul1ψl+Ψ,γ0,Φ1=l=34Pl1ϕl+Φ,γ0,(61) if only trivial functions Ψ0=0 and Φ0=0 solve the inhomogeneous system from (Equation43) to (Equation45) as M = 1: (62) Φ,θθ0+(γ1)2Φ0=0,μ[Ψr,θθ0+(γ+1)2Ψr0](γ1)Φ0=0,(γ+1)Ψr0+Ψθ,θ0=0,Φ,θθ1+(γ1)2Φ1=2(γ1)Φ0,μ[Ψr,θθ1+(γ+1)2Ψr1](γ1)Φ1=2μ(γ+1)Ψr0+Φ0,(γ+1)Ψr1+Ψθ,θ1=Ψr0,(62) then Ψ1=0 and Φ1=0 too, thus continuing m>1 we conclude that M(γ)=0. Otherwise, if non-trivial solutions Ψ0,Φ0,Ψ1,Φ1 to (Equation61) and (Equation62) exist, then M(γ)1 may be arbitrary natural number.

In the following section, we apply the general solution obtained in Theorem 3.1 to the variational Stokes problems under linear and nonlinear boundary conditions at the crack from (Equation21) to (Equation25).

4. Specific boundary conditions and singularity at crack

We begin this section with deriving stresses from Theorem 3.1.

Corollary 4.1

(Power series for stresses). The stress components τrθ, τθθ=τrr in (Equation15) are represented by the following series: (63) τrθ(r,θ)=γRrγ1m=0M(γ)(lnr)M(γ)m(M(γ)m)!Srθm(γ,θ),τθθ(r,θ)=γRrγ1m=0M(γ)(lnr)M(γ)m(M(γ)m)!Sθθm(γ,θ).(63) The angular functions are determined as m = 0, and for m=1,,M(γ) by the recurrence relations (64) Srθ0=μ[(γ1)Ψθ0+Ψr,θ0],Srθm=μ[(γ1)Ψθm+Ψr,θm+Ψθm1],(64) (65) Sθθ0=[2μγΨr0+Φ0],Sθθm=[2μ(γΨrm+Ψrm1)+Φm],(65) where Ψrm, Ψθm, and Φm are from (Equation57) and (Equation58).

Proof.

The representation (Equation63)–(Equation65) follows directly from Equations (Equation56)–(Equation58) using the incompressibility condition in (Equation18), after calculus of (Equation15) for the components of stress, and (Equation16) for strain. The calculation employs the differentiation of u with respect to r and θ akin to formulas (Equation39) and (Equation40).

Based on Corollaries 3.1 and 4.1, for fixed powers γ, we compute the first two terms in the general solution (Equation57), (Equation64) and (Equation65) as M(γ)=1 explicitly: (66) Ψr0=U10ϕ1+U20ϕ2+U30ϕ3+U40ϕ4,Ψθ0=U20ϕ1U10ϕ2+γ+1γ1U40ϕ3γ+1γ1U30ϕ4,Srθ0=2μγ[U20ϕ1U10ϕ2+U40ϕ3U30ϕ4],Sθθ0=2μγ[U10ϕ1+U20ϕ2+γ+1γ1U30ϕ3+γ+1γ1U40ϕ4],(66) and (67) Ψr1=(U11+θU20)ϕ1+(U21θU10)ϕ2+(U31+θU40)ϕ3+(U41θU30)ϕ4,Ψθ1=(U21θU10)ϕ1(U11+θU20)ϕ2+(γ+1γ1(U41θU30)2(γ1)2U40)ϕ3(γ+1γ1(U31+θU40)2(γ1)2U30)ϕ4,Srθ1=2μ[(γ(U21θU10)+U20)ϕ1(γ(U11+θU20)+U10)ϕ2+(γ(U41θU30)+U40)ϕ3(γ(U31+θU40)+U30)ϕ4],Sθθ1=2μ{(γ(U11+θU20)+U10)ϕ1+(γ(U21θU10)+U20)ϕ2+[γγ+1γ1(U31+θU40)+U30]ϕ3+[γγ+1γ1(U41θU30)+U40]ϕ4}(67) for γ1. Here we have used ((γ+1)/(γ1))/γ=2/(γ1)2 , and Φ0 and Φ1 from (Equation58) due to (Equation59) as (68) (γ1)Φ0=4μγ(U30ϕ3+U40ϕ4),(γ1)Φ1=4μγ((U31+θU40)ϕ3+(U41θU30)ϕ4).(68) If γ=1, then we put U30=U40=U31=U41=0 in (Equation66)–(Equation68), such that Φθ0=Φθ1=0 agrees (Equation38).

At the crack faces Γc± corresponding to the angles θ=±π, the functions in (Equation46) are ϕ1(γ,±π)=ϕ3(γ,±π)=cosγπ,ϕ2(γ,±π)=ϕ4(γ,±π)=sinγπ,which jump and mean according to (Equation3) and (Equation4) are (69) [[ϕ1]]=[[ϕ3]]=0,{{ϕ1}}={{ϕ3}}=cosγπ,[[ϕ2]]=[[ϕ4]]=2sinγπ,{{ϕ2}}={{ϕ4}}=0.(69) Therefore, inserting (Equation69) into (Equation66)–(Equation68) we find at the crack Γc the values (70) [[Ψr0]]=2(U20+U40)sinγπ,{{Ψr0}}=(U10+U30)cosγπ,(70) (71) [[Ψθ0]]=2(U10+γ+1γ1U30)sinγπ,{{Ψθ0}}=(U20+γ+1γ1U40)cosγπ,(71) (72) [[Srθ0]]=4μγ(U10+U30)sinγπ,{{Srθ0}}=2μγ(U20+U40)cosγπ,(72) (73) [[Sθθ0]]=4μγ(U20+γ+1γ1U40)sinγπ,{{Sθθ0}}=2μγ(U10+γ+1γ1U30)cosγπ,(73) and (74) [[Ψr1]]=2(U21+U41)sinγπ2π(U20+U40)cosγπ,{{Ψr1}}=(U11+U31)cosγπ+π(U10+U30)sinγπ,(74) (75) [[Ψθ1]]=2[U11+γ+1γ1U312(γ1)2U30]sinγπ+2π(U10+γ+1γ1U30)cosγπ,{{Ψθ1}}=[U21+γ+1γ1U412(γ1)2U40]cosγπ+π(U20+γ+1γ1U40)sinγπ,(75) (76) [[Srθ1]]=4μ(γ(U11+U31)+U10+U30)sinγπ+4μγπ(U10+U30)cosγπ,{{Srθ1}}=2μ(γ(U21+U41)+U20+U40)cosγπ+2μγπ(U20+U40)sinγπ,(76) (77) [[Sθθ1]]=4μ[γ(U21+γ+1γ1U41)+U20+U40]sinγπ+4μγπ(U20+γ+1γ1U40)cosγπ,{{Sθθ1}}=2μ[γ(U11+γ+1γ1U31)+U10+U30]cosγπ2μγπ(U10+γ+1γ1U30)sinγπ.(77) Based on (Equation70)–(Equation77), we distinguish each case of the boundary conditions in (Equation21)–(Equation25).

4.1. Crack under Dirichlet conditions of stick

According to the Dirichlet conditions in (Equation5), two pairs of equations {{Ψr0}}=[[Ψθ0]]=0 and [[Ψr0]]={{Ψθ0}}=0 in (Equation70) and (Equation71) compose two homogeneous matrix equations with respect to free coefficients U10,,U40: (78) (cosγπcosγπ2sinγπ2γ+1γ1sinγπ)(U10U30)=(00),(2sinγπ2sinγπcosγπγ+1γ1cosγπ)(U20U40)=(00).(78) The solvability of (Equation78) needs matrix determinant 2/(γ1)sin(2γπ) equals to zero, i.e. (79) sin(2γπ)=0,(79) which holds for the half-integer powers (80) γ=n2for integer nZ.(80) These eigenvalues distinguish three cases of possible solutions to (Equation78): (81) {cosγπ=0:U10+γ+1γ1U30=0,U20+U40=0,sinγπ=0,γ1:U10+U30=0,U20+γ+1γ1U40=0,γ=1:U10=U20=U30=U40=0.(81) Here, U30=U40=0 as γ=1 due to (Equation59) and follows only trivial U10=U20=0 in (Equation78), and the corresponding pressure P30ϕ3(1,θ)+P40ϕ4(1,θ)=P30 is constant.

As m = 1, equations {{Ψr1}}=[[Ψθ1]]=0 and [[Ψr1]]={{Ψθ1}}=0 from (Equation74) and (Equation75) now build two inhomogeneous 2×2-matrix equations with respect to coefficients U11,,U41 as follows: (82) (cosγπcosγπ2sinγπ2γ+1γ1sinγπ)(U11U31)=(π(U10+U30)sinγπ2π(U10+γ+1γ1U30)cosγπ+4(γ1)2U30sinγπ),(2sinγπ2sinγπcosγπγ+1γ1cosγπ)(U21U41)=(2π(U20+U40)cosγππ(U20+γ+1γ1U40)sinγπ4(γ1)2U40cosγπ),(82) with the same system matrix as in (Equation78). Then (Equation82) is solvable when (83) {cosγπ=0:U10+U30=0,U20+γ+1γ1U40=0,sinγπ=0,γ1:U10+γ+1γ1U30=0,U20+U40=0.(83) The conditions (Equation81) and (Equation83) together lead to trivial coefficients U10=U20=U30=U40=0 for all γ. On the basis of Corollary 3.1, using (Equation80) and (Equation81) we conclude with the following result.

Theorem 4.1

(Power series for the Dirichlet crack problem). The Stokes equation (Equation18) with the crack under Dirichlet boundary conditions (Equation5) have the power series solution without logarithms: (84) u(r,θ)=nZ{2}rn/2Ψ0(n2,θ),p(r,θ)=nZ{0}rn/21Φ0(n2,θ),(84) since Ψ0(1,θ)0 and Φ0(0,θ)0, where the angular functions for every n are given by (85) Ψ0(n2,θ)=l=14Ul0ψl(n2,θ),Φ0(n2,θ)=l=34Pl0ϕl(n2,θ),(85) with the eigenvectors ψ1,,ψ4 and ϕ3,ϕ4 from (Equation60) and (Equation46) as γ=n/2. If n2, six coefficients U10,,U40,P30,P40R satisfy the four relations in dependence of kZ: (86) {n=2k1:U10+2k+12k3U30=0,U20+U40=0,n=2k,k1:U10+U30=0,U20+k+1k1U40=0,4μnUl0=(n2)Pl0for l=3,4.(86) If n = 2, then u1=0, and p1=P30 is constant.

As a consequence of Theorem 4.1, for the variational solution from Proposition 2.1 requiring that n>0 (up to constant u(0) when r0), we derive the principal asymptotic term in (Equation84) as n = 1.

Corollary 4.2

(Singular solution for the Dirichlet crack problem). The variational solution to the Dirichlet problem has the following singularity at the crack tip as r0: (87) u(r,θ)u(0)=r1/2[U30(3cos3θ2+cosθ23sin3θ23sinθ2)+U40(sin3θ2sinθ2cos3θ23cosθ2)]+O(r3/2),(87) the pressure p=4μr1/2(U30cosθ2+U40sinθ2)+O(1) and stresses τrr=μr1/2[U30(3cos3θ2+5cosθ2)+U40(sin3θ25sinθ2)]+O(1),τrθ=μr1/2[U30(3sin3θ2+sinθ2)+U40(cos3θ2+cosθ2)]+O(1),τθθ=μr1/2[U30(3cos3θ2+3cosθ2)+U40(sin3θ23sinθ2)]+O(1).

Proof.

As n = k = 1, i.e. γ=1/2, we calculate (γ+1)/(γ1)=(2k+1)/(2k3)=3, then U103U30=0, U20+U40=0 in (Equation86), and from (Equation84) it follows u1/2(r,θ)=r1/2(U30[3ψ1(12,θ)+ψ3(12,θ)]+U40[ψ2(12,θ)+ψ4(12,θ)]),which results in the explicit expression (Equation87). The formula for pressure and stresses follows respectively from (Equation85), (Equation86) and (Equation63)–(Equation65).

The asymptotic stresses τrr,τrθ,τθθ corresponding to the dominate singular term in (Equation87) are depicted around the crack tip in Figure  for U40=0 in plots (a)–(c), and for U30=0 in plots (d)–(f).

Figure 2. Singular stresses τrr,τrθ,τθθ in the Dirichlet crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U30=1,U40=0, and in plots (d)–(f) as U30=0,U40=1.

Figure 2. Singular stresses τrr,τrθ,τθθ in the Dirichlet crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U30=1,U40=0, and in plots (d)–(f) as U30=0,U40=1.

4.2. Crack under mixed Dirichlet–Neumann impermeability condition

Because in the polar coordinates the normal displacement at the crack is un=uθ, and the tangential stress is τ(τn)n=τrθ, the mixed Dirichlet–Neumann boundary conditions in (Equation6) imply the following pairs of equations [[Ψθ0]]=[[Srθ0]]=0 and {{Ψθ0}}={{Srθ0}}=0. According to their representation in (Equation71) and (Equation72), we get two matrix equations: (88) (2sinγπ2γ+1γ1sinγπ4μγsinγπ4μγsinγπ)(U10U30)=(00),(cosγπγ+1γ1cosγπ2μγcosγπ2μγcosγπ)(U20U40)=(00),(88) which solvability necessitates again the condition (Equation79), half-integer powers (Equation80), and admissible solutions (89) {cosγπ=0:U10=U30=0,sinγπ=0,γ0,1:U20=U40=0,γ=0:U20U40=0,γ=1:U20=U30=U40=0.(89) Here, if γ=1, then U30=U40=0 holds together with U20=0 in (Equation88).

As m = 1, equations [[Ψθ1]]=[[Srθ1]]=0 and {{Ψθ1}}={{Srθ1}}=0 according to (Equation75) and (Equation76) read (90) (2sinγπ2γ+1γ1sinγπ4μγsinγπ4μγsinγπ)(U11U31)=(2π(U10+γ+1γ1U30)cosγπ+4(γ1)2U30sinγπ4μ(U10+U30)sinγπ4μγπ(U10+U30)cosγπ),(cosγπγ+1γ1cosγπ2μγcosγπ2μγcosγπ)(U21U41)=(π(U20+γ+1γ1U40)sinγπ4(γ1)2U40cosγπ2μ(U20+U40)cosγπ2μγπ(U20+U40)sinγπ),(90) and they are solvable when (91) {cosγπ=0:U20=U40=0,sinγπ=0,γ0,1:U10=U30=0,γ=0:U10U30=0,U20+U40=0,γ=1:U10=U30=U40=0.(91) From (Equation90) and (Equation91) we infer that no logarithms occur except for γ=0.

Theorem 4.2

(Power series for the impermeability crack problem). The Stokes equation (Equation18) with the crack under mixed Dirichlet–Neumann impermeability conditions (Equation6) have the power series solution: (92) u(r,θ)u0(r,θ)=nZ{0}rn/2Ψ0(n2,θ),p(r,θ)=nZ{0}rn/21Φ0(n2,θ),(92) since Φ0(0,θ)0, and u0(r,θ) is determined according to (Equation56) and (Equation57) at γ=n/2=0. For n0, the functions Ψ0 and Φ0 are given in (Equation85) involving the six coefficients U10,,U40,P30,P40R as follows: (93) {n=2k1:U10=U30=0,n=2k,k0,1:U20=U40=0,n=2:U20=U30=U40=0,4μnUl0=(n2)Pl0for l=3,4.(93) For the variational solution n>0, the crack singularity has the explicit form as n = k = 1 in (Equation93): (94) u(r,θ)u(0)=r1/2[U20(sin3θ2cos3θ2)+U40(sinθ23cosθ2)]+O(r),(94) the pressure and stresses p=4μr1/2U40sinθ2+O(1),τrr=μr1/2(U20sin3θ25U40sinθ2)+O(1),τrθ=μr1/2(U20cos3θ2+U40cosθ2)+O(1),τθθ=μr1/2(U20sin3θ23U40sinθ2)+O(1),which are depicted in Figure  for U40=0 in plots (a)–(c), and for U20=0 in plots (d)–(f).

Figure 3. Singular stresses τrr,τrθ,τθθ in the Dirichlet–Neumann crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U20=1,U40=0, and in plots (d)–(f) as U20=0,U40=1.

Figure 3. Singular stresses τrr,τrθ,τθθ in the Dirichlet–Neumann crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U20=1,U40=0, and in plots (d)–(f) as U20=0,U40=1.

4.3. Stress-free crack under Neumann conditions

The four equations constituting homogeneous Neumann boundary conditions (Equation7) are decoupled into two pairs, using expressions (Equation72) and (Equation73) as m = 0 for [[Srθ0]]={{Sθθ0}}=0 and {{Srθ0}}=[[Sθθ0]]=0: (95) (4μγsinγπ4μγsinγπ2μγcosγπ2μγγ+1γ1cosγπ)(U10U30)=(00),(2μγcosγπ2μγcosγπ4μγsinγπ4μγγ+1γ1sinγπ)(U20U40)=(00).(95) Zero matrix determinant in (Equation95) leads to γ in (Equation79) and (Equation80), such that admissible coefficients are (96) {cosγπ=0:U10+U30=0,U20+γ+1γ1U40=0,sinγπ=0,γ0,1:U10+γ+1γ1U30=0,U20+U40=0,γ=0:arbitrary U10,U20,U30,U40,γ=1:U10=U20=U30=U40=0,(96) where U30=U40=0 as γ=1 was used from Theorem 3.1.

For m = 1, equations [[Srθ1]]={{Sθθ1}}=0 and {{Srθ1}}=[[Sθθ1]]=0 in (Equation76) and (Equation77) read: (97) (4μγsinγπ4μγsinγπ2μγcosγπ2μγγ+1γ1cosγπ)(U11U31)=(4μ(U10+U30)sinγπ4μγπ(U10+U30)cosγπ2μ(U10+U30)cosγπ+2μγπ(U10+γ+1γ1U30)sinγπ),(2μγcosγπ2μγcosγπ4μγsinγπ4μγγ+1γ1sinγπ)(U21U41)=(2μ(U20+U40)cosγπ2μγπ(U20+U40)sinγπ4μ(U20+U40)sinγπ4μγπ(U20+γ+1γ1U40)cosγπ).(97) The inhomogeneous system (Equation97) is solvable when (98) {cosγπ=0:U10+γ+1γ1U30=0,U20+U40=0,sinγπ=0,γ0,1:U10+U30=0,U20+γ+1γ1U40=0,γ=0:U10+U30=0,U20+U40=0.(98) Together with (Equation96), conditions (Equation98) imply U10=U20=U30=U40=0 for γ0 and the next theorem.

Theorem 4.3

(Power series for the Neumann crack problem). The Stokes equation (Equation18) under the stress-free crack conditions (Equation7) have the power series solution: (99) u(r,θ)u0(r,θ)=nZ{0,2}rn/2Ψ0(n2,θ),p(r,θ)=nZ{0}rn/21Φ0(n2,θ),(99) where u0(r,θ) is determined according to (Equation56) and (Equation57). The angular functions for n0 are defined in (Equation85) and (Equation60) as γ=n/2, with the coefficients determined according to formula (Equation96) for kZ: (100) {n=2k1:U10+U30=0,U20+2k+12k3U40=0,n=2k,k0,2:U10+k+1k1U30=0,U20+U40=0,4μnUl0=(n2)Pl0for l=3,4.(100) For the variational solution as n>0, the crack-tip singularity as r0 is expressed explicitly: (101) u(r,θ)u(0)=r1/2[U30(cos3θ2+cosθ2sin3θ23sinθ2)+U40(3sin3θ2sinθ23cos3θ23cosθ2)]+O(r3/2),(101) when U10+U30=0 and U203U40=0 are set for n = k = 1 in (Equation100), and γ=1/2 in (Equation60). The pressure p=4μr1/2(U30cosθ2+U40sinθ2)+O(1) and stresses are τrr=μr1/2[U30(cos3θ2+5cosθ2)+U40(3sin3θ25sinθ2)]+O(1),τrθ=μr1/2[U30(sin3θ2+sinθ2)+U40(3cos3θ22cosθ2)]+O(r1/2),τθθ=μr1/2[U30(cos3θ2+3cosθ2)+U40(3sin3θ23sinθ2)]+O(1),as depicted around the crack tip in Figure  for U40=0 in plots (a)–(c), and for U30=0 in plots (d)–(f).

Figure 4. Singular stresses τrr,τrθ,τθθ in the Neumann crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U30=1,U40=0, and in plots (d)–(f) as U30=0,U40=1.

Figure 4. Singular stresses τrr,τrθ,τθθ in the Neumann crack problem for Stokes equations in plots (a)–(c) as the stress intensity factors U30=1,U40=0, and in plots (d)–(f) as U30=0,U40=1.

4.4. Crack under non-penetration conditions

The boundary conditions describing non-penetration between the crack faces (Equation8) in the polar coordinates at m = 0 yield as in the Neumann case {{Srθ0}}=[[Sθθ0]]=0, hence the second system in (Equation95) providing the determinant in (Equation79) and the half-integers powers in (Equation80). The other conditions consisting of [[Srθ0]]=0 and complementarity relations {{Sθθ0}}[[Ψθ0]]=0, {{Sθθ0}}0, [[Ψθ0]]0, using (Equation71)–(Equation73) yield (102) 4μγ(U10+U30)sinγπ=0,2μγ(U10+γ+1γ1U30)2sin(2γπ)=0,2μγ(U10+γ+1γ1U30)cosγπ0,2(U10+γ+1γ1U30)sinγπ0.(102) The second system in (Equation95) for U20,U40 and nonlinear relations (Equation102) for U10,U30 have admissible solutions (103) {cosγπ=0:U10+U30=0,1γ1U30sinγπ0,U20+γ+1γ1U40=0,sinγπ=0,γ0,1:γ(U10+γ+1γ1U30)cosγπ0,U20+U40=0,γ=0:arbitrary U10,U20,U30,U40,γ=1:U100,U20=U30=U40=0,(103) where U30=U40=0 at γ=1 follows U100 in (Equation102), and U20=0 from the second system in (Equation95).

At m = 1, linear conditions {{Srθ1}}=[[Sθθ1]]=0 imply the second system in (Equation97). According to (Equation98) we find U20+U40=0 for cosγπ=0 or γ=0, and U20+γ+1γ1U40=0 for sinγπ=0 and γ0,1. Together with (Equation103) this means that logarithms for the eigenvectors ϕ2 and ϕ4 may appear only if γ=0.

The nonlinear conditions [[Srθ1]]=0 and {{Sθθ1}}[[Ψθ1]]=0, {{Sθθ1}}0, [[Ψθ1]]0 in (Equation75) and (Equation77), after division by 2 and 2μ>0 are (104) γ(U11+U31)sinγπ=(U10+U30)(sinγπ+γπcosγπ),([γ(U11+γ+1γ1U31)+U10+U30]cosγπγπ(U10+γ+1γ1U30)sinγπ)×([U11+γ+1γ1U312(γ1)2U30]sinγπ+π(U10+γ+1γ1U30)cosγπ)=0,γ(U11+γ+1γ1U31)cosγπ(U10+U30)cosγπ+γπ(U10+γ+1γ1U30)sinγπ,(U11+γ+1γ1U31)sinγπ2(γ1)2U30sinγππ(U10+γ+1γ1U30)cosγπ.(104) If cosγπ=0 in (Equation104) for γ=k1/2, using U10+U30=0 from the first string in (Equation103) shortens it to U11+U31=0,(U311γ1U30)U30=0,γγ1U30sinγπ0,1γ1(U311γ1U30)sinγπ0,which leads to the complementary cases: either U30=0 (following U10=0 due to (Equation103)) or (105) U11+U31=0,U31=1γ1U30,γγ1U30sinγπ>0.(105) But the last inequality in (Equation105) contradicts to the opposite inequality in (Equation103) when γ=k1/2>0. Thus, (Equation105) is possible and may lead to the logarithms only for γ=k1/2<0.

If sinγπ=0 for γ=k and γ0, from conditions (Equation104) we have (106) U10+U30=0,1γ1(U11+γ+1γ1U31)U30=0,γ(U11+γ+1γ1U31)cosγπ0,1γ1U30cosγπ0.(106) The last inequality in (Equation106) contradicts to the opposite inequality in the second string of (Equation103) when γ=k<0. For γ=k>1, this complementarity holds when either (U11+γ+1γ1U31)cosγπ0,U30=0or U11+γ+1γ1U31=0,1γ1U30cosγπ<0,and for γ=k=1 when U110 and U10=U30=0 due to (Equation59), thus excluding logarithms. For γ=0, the relations (Equation104) hold when U10+|U30|=0. Thus, logarithms for the eigenvectors ϕ1 and ϕ3 may appear for the powers γ=0 and γ=k>1. We summarize the results in the next theorem.

Theorem 4.4

(Power series for the non-penetration crack problem). The Stokes equation (Equation18) describing the non-penetrating crack under unilateral conditions (Equation8) possess the power series solution, for kZ: (107) u(r,θ)=k>0rk1/2l=14Ul0ψl(k12,θ)+k0rk1/2m=0M(k)(lnr)M(k)m(M(k)m)!Ψ~m(k12,θ)+{k<0,k=1}rkl=14Ul0ψl(k,θ)+{k>1,k=0}rkm=0M(k)(lnr)M(k)m(M(k)m)!Ψ~m(k,θ),(107) (108) p(r,θ)=k>0rk3/2l=34Pl0ϕl(k12,θ)+k0rk3/2m=0M(k)(lnr)M(k)m(M(k)m)!Φ~m(k12,θ)+{k<0,k=1}rk1l=34Pl0ϕl(k,θ)+k>1rk1m=0M(k)(lnr)M(k)m(M(k)m)!Φ~m(k,θ),(108) where reduced functions Ψ~m and Φ~m for the powers γ=k1/2 and γ=k are defined by the recurrence: (109) Ψ~0(γ,θ)=l=1,3Ul0ψl(γ,θ),Ψ~m=l=1,3Ulmψl(γ,θ)i=1m(1)ii!iΨ~miγi,Φ~0(γ,θ)=P30ϕ3(γ,θ),Φ~m=P3mϕ3(γ,θ)i=1m(1)ii!iΦ~miγi.(109) For the variational solution as k>0, the singularity of the non-penetrating crack is the same as in (Equation101) for the stress-free crack, the next asymptotic term is of order O(r), and the coefficients U30 are such that (110) U300.(110)

4.5. Shear crack under transmission with slip conditions

The transmission with slip boundary conditions at the crack (Equation9) expressed in the polar coordinates as [[Srθ0]]=[[Ψθ0]]=0 and {{Srθ0}}=[[Sθθ0]]=0, using formulas (Equation71)–(Equation73), are (111) (4μγsinγπ4μγsinγπ2sinγπ2γ+1γ1sinγπ)(U10U30)=(00),(2μγcosγπ2μγcosγπ4μγsinγπ4μγγ+1γ1sinγπ)(U20U40)=(00).(111) The solvability of (Equation111) requires that sinγπ=0, that holds for γ=n, nZ, and admissible coefficients (112) {sinγπ=0,γ0,1:U20+U40=0,γ=0:arbitrary U10,U20,U30,U40,γ=1:U20=U30=U40=0.(112) For m = 1, equations [[Srθ1]]=[[Ψθ1]]=0 and {{Srθ1}}=[[Sθθ1]]=0 from (Equation75)–(Equation77) imply (113) (4μγsinγπ4μγsinγπ2sinγπ2γ+1γ1sinγπ)(U11U31)=(4μ(U10+U30)sinγπ4μγπ(U10+U30)cosγπ4(γ1)2U30sinγπ2π(U10+γ+1γ1U30)cosγπ),(2μγcosγπ2μγcosγπ4μγsinγπ4μγγ+1γ1sinγπ)(U21U41)=(2μ(U20+U40)cosγπ2μγπ(U20+U40)sinγπ4μ(U20+U40)sinγπ4μγπ(U20+γ+1γ1U40)cosγπ).(113) Since sinγπ=0, the inhomogeneous system (Equation97) is solvable when (114) {sinγπ=0,γ0,1:U10=U30=0,U20+γ+1γ1U40=0,γ=0:U10U30=0,U20+U40=0,γ=1:U10=U20=U30=U40=0.(114) Conditions (Equation112) and (Equation114) together imply that U10=U20=U30=U40=0 and no log-oscillations for γ0.

Theorem 4.5

(Power series for the share crack problem). The Stokes equation (Equation18) under the transmission boundary conditions with slip at the crack (Equation9) possess the power series solution: (115) u(r,θ)u0(r,θ)=nZ{0}rnΨ0(n,θ),p(r,θ)=nZ{0}rn1Φ0(n,θ),(115) where u0(r,θ) is given in (Equation56) and (Equation57) as n = 0. The functions Ψ0 and Φ0 are expressed by the sum (116) Ψ0=l=14Ul0ψl(n,θ),Φ0=l=34Pl0ϕl(n,θ)(116) of the eigenvectors from (Equation60) as γ=n with the coefficients satisfying relations (Equation112) and (Equation59).

For the variational solution as n>0, the crack-tip singularity is described by the asymptotic formula (117) u(r,θ)u(0)=U10r(cos2θsin2θ)+O(r2),(117) the pressure p=O(r) and stresses τrr=2μcos2θ+O(r), τrθ=2μsin2θ+O(r), τθθ=2μcos2θ+O(r).

5. Concluding remarks

The main purpose of the analytical derivation of asymptotic solutions near the crack tip is to describe singular behaviour for the underlying crack-like problems. Thus, the principal asymptotic term obtained from the power series answers the questions of square-root and log-oscillations. The important point for analysis is that the derived singular term restricts maximal regularity of variational solutions for the Stokes problem, which can be expressed in weighted Sobolev spaces, see Ref. [Citation22, Section 5.8].

The power series solutions for the Stokes equation obtained in our work are validated theoretically by the rigorous asymptotic analysis. The main advantage concerns nonlinear and non-standard boundary conditions which can be treated within our approach. In comparison with the classical Dirichlet and Neumann problems, the present solutions coincide with those ones known from the literature. For numerical techniques which are suitable for the singular field modelling, we cite the methods of potential [Citation23], locking-free elements [Citation24], extended finite element [Citation25] and boundary element methods [Citation26,Citation27].

The example solutions are presented for the crack that is a void in a solid body. A crack-like object in an incompressible fluid can describe flow around a thin plate subject to boundary conditions imposed on the plate faces, e.g. the fluid adhesion [Citation28]. In the general case, a thin plate in a body can be considered as an inclusion made from another phase of material (called anti-crack, stiffener, defect). The problem definition was extended to inclusions in the works by Khludnev and Popova [Citation29] with the help of Robin-type boundary conditions: [[u]]=0,[[τ]]=1δu,where δ>0 is the rigidity parameter. The limit case δ0 describes a rigid inclusion corresponding to the Dirichlet conditions (Equation5), and the crack-free state is recovered as δ. The asymptotic solution was extended to a poroelastic body with a fluid-filled crack in Ref. [Citation30]. For the other possible nonlinear boundary conditions due to the stick–slip, we refer to Ref. [Citation5].

Acknowledgments

V.A.K. thanks the Austrian Science Fund (FWF) project P26147-N26 (PION); K.O. is supported by the Research Institute for Mathematical Sciences.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

References

  • Ladyzhenskaya OA. The mathematical theory of viscous incompressible flow. New York: Science Publishers; 1969.
  • Kikuchi N, Oden JT. Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia, PA: SIAM; 1988.
  • Beneš M, Kučera P. Solutions to the Navier–Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math Nachrichten. 2016;289(2–3):194–212.
  • Dauge M. Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J Math Anal. 1989;20(1):74–97.
  • Haslinger J, Kučera R, Sassi T, et al. Dual strategies for solving the Stokes problem with stick–slip boundary conditions in 3D. Math Comput Simul. 2021;189:191–206.
  • Khludnev AM, Kovtunenko VA. Analysis of cracks in solids. Southampton: WIT-Press; 2000.
  • González Granada JR, Kovtunenko VA. A shape derivative for optimal control of the nonlinear Brinkman–Forchheimer equation. J Appl Numer Optim. 2021;3(2):243–261.
  • Itou H, Kovtunenko VA, Rajagopal KR. On an implicit model linear in both stress and strain to describe the response of porous solids. J Elasticity. 2021;144(1):107–118.
  • González Granada JR, Gwinner J, Kovtunenko VA. On the shape differentiability of objectives: a Lagrangian approach and the Brinkman problem. Axioms. 2018;7(4):76.
  • Kovtunenko VA. Sensitivity of cracks in 2D-Lamé problem via material derivatives. Z Angew Math Phys. 2001;52(6):1071–1087.
  • Kovtunenko VA, Ohtsuka K. Shape differentiability of Lagrangians and application to Stokes problem. SIAM J Control Optim. 2018;56:3668–3684.
  • Kovtunenko VA, Ohtsuka K. Shape differentiability of Lagrangians and application to overdetermined problems. In: Itou H, Hirano S, Kimura M, Kovtunenko VA, Khludnev AM, editors. Mathematical analysis of continuum mechanics and industrial applications III (Proc. CoMFoS18), Mathematics for Industry Vol. 34. Singapore: Springer; 2020. p. 97–110.
  • Kovtunenko VA, Ohtsuka K. Inverse problem of shape identification from boundary measurement for Stokes equations: shape differentiability of Lagrangian. J Inv Ill-Posed Prob. 2022;30.  https://doi.org/10.1515/jiip-2020-0081.
  • Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech. 1956;24(1):109–114.
  • Kondrat'ev VA, Oleinik OA. Boundary-value problems for partial differential equations in non-smooth domains. Russ Math Surv. 1983;38(2):1–86.
  • Itou H, Khludnev AM, Rudoy EM, et al. Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity. Z Angew Math Mech. 2012;92(9):716–730.
  • Itou H, Kovtunenko VA, Tani A. The interface crack with Coulomb friction between two bonded dissimilar elastic media. Appl Math. 2011;56(1):69–97.
  • Khludnev AM, Kozlov VA. Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions. Z Angew Math Phys. 2008;59(2):264–280.
  • Duduchava R, Wendland WL. The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems. Integr Equ Oper Theory. 1995;23:294–335.
  • Costabel M, Dauge M. Crack singularities for general elliptic systems. Math Nachrichten. 2002;235(1):29–49.
  • Stephenson RA. The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials. J Elasticity. 1982;12(1):65–99.
  • Kozlov VA, Maz'ya VG, Rossmann J. Spectral problems associated with corner singularities of solutions to elliptic equations. Providence, UT: AMS; 2001.
  • Hintermüller M, Kovtunenko VA, Kunisch K. A Papkovich–Neuber-based numerical approach to cracks with contact in 3D. IMA J Appl Math. 2009;74(3):325–343.
  • Belhachmi Z, Sac-Epée J-M, Tahir S. Locking-free finite elements for unilateral crack problems in elasticity. Math Model Nat Phenom. 2009;4(1):1–20.
  • Wagner GJ, Moës N, Liu WK, et al. The extended finite element method for rigid particles in Stokes flow. Int J Numer Meth Eng. 2001;51(3):293–313.
  • Feng W-Z, Gao L-F, Dai Y-W, et al. DBEM computation of T-stress and mixed-mode SIFs using interaction integral technique. Theor Appl Fract Mech. 2020;110:102795.
  • Feng W-Z, Gao L-F, Qu M, et al. An improved singular curved boundary integral evaluation method and its application in dual BEM analysis of two- and three-dimensional crack problems. Eur J Mech A/Solids. 2020;84:104071.
  • Berdnik Y, Beskopylny A. The approximation method in the problem on a flow of viscous fluid around a thin plate. Aircr Eng Aerosp Technol. 2019;91(6):807–813.
  • Khludnev AM, Popova TS. Equilibrium problem for elastic body with delaminated T-shape inclusion. J Comput Appl Math. 2020;376:112870.
  • Itou H, Kovtunenko VA, Lazarev NP. Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture. Appl Eng Sci. 2022;10:100089.

Appendix 1

Proof of Lemma 3.3

The proof of (Equation51)–(Equation55) is leaded by induction over indexes i=0,,m. As i = 0, the general solution Φ0 is the direct consequence of the second equation in (Equation49): Φ0=P30ϕ3+P40ϕ4,Φ,θθ0+(γ1)2Φ0=0,which leads to representation of Ψr0 by the sum of general and particular solutions from (Equation49): Ψr0=U10ϕ1+U20ϕ2+U30ϕ3+U40ϕ4,4μγUl0=(γ1)Pl0for l=3,4,μ[Ψr,θθ0+(γ+1)2Ψr0]=(γ1)Φ0,and to the similar expression of Ψθ0: Ψθ0=U~10ϕ1+U~20ϕ2+U~30ϕ3+U~40ϕ4,where U~10=U20,U~20=U10,(γ1)U~30=(γ+1)U40,(γ1)U~40=(γ+1)U30,(γ+1)Ψr0+Ψθ,θ0=0according to (Equation47). As i = 1, the solution Φ1 in the form of a linear span Φ1=P31ϕ3+P41ϕ4+P30ϕ3,γ+P40ϕ4,γ,Φ,θθ1+(γ1)2Φ1=2(γ1)Φ0follows from the second equations in (Equation49) and (Equation50). This again leads to the combination of general and particular solutions satisfying (Equation49) and (Equation50) such that Ψr1=U11ϕ1+U21ϕ2+U31ϕ3+U41ϕ4+U10ϕ1,γ+U20ϕ2,γ+U30ϕ3,γ+U40ϕ4,γ,4μγUl1=(γ1)Pl1for l=3,4,μ[Ψr,θθ1+(γ+1)2Ψr1]=2μ(γ+1)Ψr0+(γ1)Φ1+Φ0.Let us suppose that equations in (Equation43) hold for all Φ0,,Φm1, that is (A1) Φ,θθmi+(γ1)2Φmi=2(γ1)Φmi1Φmi2=0for i=1,,m,Φ1=Φ2=0.(A1) Inserting the ansatz (Equation51) into the left-hand side of Equation (Equation43) for Φm, using the second equation in (Equation49) and Equation (EquationA1), after shifting the summation indexes, gives the expression (A2) Φ,θθm+(γ1)2Φm=l=34Plm(ϕl,θθ+(γ1)2ϕl)i=1m(1)ii!(iΦ,θθmiγi+(γ1)2iΦmiγi)=i=1m(1)ii!(iγi[(γ1)2Φmi+2(γ1)Φmi1+Φmi2](γ1)2iΦmiγi)=i=1m(1)ii!(i[(γ1)2Φmi]γiii1[2(γ1)Φmi]γi1+i(i1)i2Φmiγi2(γ1)2iΦmiγi).(A2) With the help of calculus using the triangle numbers, for k{2,,i}: (A3) i[(γ1)2Φmi]γi=ikγik((γ1)2kΦmiγk+2(γ1)kk1Φmiγk1+k(k1)k2Φmiγk2)=(γ1)2iΦmiγi+2(γ1)ii1Φmiγi1+i(i1)i2Φmiγi2,(A3) (A4) i1[2(γ1)Φmi]γi1=ikγik(2(γ1)k1Φmiγk1+2(k1)k2Φmiγk2)=2(γ1)i1Φmiγi1+2(i1)i2Φmiγi2,(A4) we proceed the expression (EquationA2) as Φ,θθm+(γ1)2Φm=i=3m(1)ii!0+i=12(1)ii!(2(γ1)ii1Φmiγi1+i(i1)i2Φmiγi2)(1)22!2((γ1)2Φ,γm2+2Φm2)=2(γ1)Φm1Φm2,which proves formula (Equation43) for the series (Equation51) by the induction argument.

Now let equations in (Equation44) hold for all Ψr0,,Ψrm1, such that setting Ψr1=Ψr2=0 we have (A5) μ[Ψr,θθmi+(γ+1)2Ψrmi]=μ[2(γ+1)Ψrmi1+Ψrmi2]+(γ1)Φmi+Φmi1for i=1,,m.(A5) Inserting the ansatz (Equation51) and (Equation52) into the left-hand side of Equation (Equation44) for Ψrm and applying Equations (Equation49), (EquationA5) and shift of the summation indexes akin to (EquationA2) result in μ[Ψr,θθm+(γ+1)2Ψrm]=μl=14Ulm(ϕl,θθ+(γ+1)2ϕl)μi=1m(1)ii!(iΨr,θθmiγi+(γ+1)2iΨrmiγi)=4μγl=34Ulmϕl+i=1m(1)ii!×(iγi[μ[(γ+1)2Ψrmi+2(γ+1)Ψrmi1+Ψrmi2](γ1)ΦmiΦmi1]μ(γ+1)2iΨrmiγi)=4μγl=34Ulmϕl+i=1m(1)ii!(i[μ(γ+1)2Ψrmi(γ1)Φmi]γiii1[2μ(γ+1)ΨrmiΦmi]γi1+μi(i1)i2Ψrmiγi2μ(γ+1)2iΨrmiγi).Using similar to (EquationA3) and (EquationA4) identities i[μ(γ+1)2Ψrmi(γ1)Φmi]γi=μ(γ+1)2iΨrmiγi+2μ(γ+1)ii1Ψrmiγi1+μi(i1)i2Ψrmiγi2(γ1)iΦmiγiii1Φmiγi1,i1[2μ(γ+1)ΨrmiΦmi]γi1=2μ(γ+1)i1Ψrmiγi1+2μ(i1)i2Ψrmiγi2i1Φmiγi1,we continue the calculation μ[Ψr,θθm+(γ+1)2Ψrm]4μγl=34Ulmϕl=(γ1)i=1m(1)ii!iΦmiγi+i=12(1)ii!(2μ(γ+1)ii1Ψrmiγi1+μi(i1)i2Ψrmiγi2ii1Φmiγi1)(1)22!2(μ(γ+1)2Ψr,γm2+2μΨrm2Φ,γm2)=(γ1)(Φml=34Plmϕl)2μ(γ+1)Ψrm1μΨrm2+Φm1.This equality leads to the relation between coefficients (Equation54) and proves Equation (Equation44).

Finally, using (Equation47) we calculate the derivative of Φθm in (Equation53) as (A6) Φθ,θm=(γ+1)U~2mϕ1(γ+1)U~1mϕ2+(γ1)U~4mϕ3(γ1)U~3mϕ4i=1m(1)ii!iΨθ,θmiγi.(A6) Based on the assumption that the terms in the series (Equation52) and (Equation53) satisfy the equations in (Equation45): Ψθ,θmi=(γ+1)ΨrmiΨrmi1for i=1,,m,the sum in (EquationA6) can be represented in such a way that (A7) i=1m(1)ii!iΨθ,θmiγi=i=1m(1)ii!iγi[(γ+1)Ψrmi+Ψrmi1]=i=1m(1)ii!(i[(γ+1)Ψrmi]γiii1Ψrmiγi1)=(γ+1)i=1m(1)ii!iΨrmiγi+(1)1!Φrm1=(γ+1)(l=14UlmϕlΦrm)Φrm1.(A7) Consequently, inserting (EquationA7) into (EquationA6) we derive the relation between coefficients (Equation55) and Equation (Equation45). This completes the proof.