890
Views
5
CrossRef citations to date
0
Altmetric
Research Article

On generalized degenerate Euler–Genocchi polynomials

, &
Article: 2159958 | Received 08 Sep 2022, Accepted 12 Dec 2022, Published online: 30 Dec 2022

ABSTRACT

We introduce the generalized degenerate Euler–Genocchi polynomials as a degenerate version of the Euler–Genocchi polynomials. In addition, we introduce their higher-order version, namely the generalized degenerate Euler–Genocchi polynomials of order α, as a degenerate version of the generalized Euler–Genocchi polynomials of order α. The aim of this paper is to study certain properties and identities involving those polynomials, the generalized falling factorials, the degenerate Euler polynomials of order α, the degenerate Stirling numbers of the second kind, and the ‘alternating degenerate power sum of integers’.

AMS 2010:

1. Introduction

Explorations for various degenerate versions of some special numbers and polynomials have drawn the attention of many mathematicians in recent years, which were initiated by Carlitz's work in [Citation1,Citation2]. Many interesting results were obtained by exploiting different tools such as generating functions, combinatorial methods, p-adic analysis, umbral calculus, differential equations, probability theory, operator theory, analytic number theory and quantum physics (see [Citation3–14]).

Belbachir et al. introduced the Euler–Genocchi polynomials in [Citation15,Citation16] and Goubi generalized them to the generalized Euler–Genocchi polynomials of order α in [Citation17]. Here we introduce degenerate versions for both of them. Namely, we introduce the generalized degenerate Euler–Genocchi polynomials as a degenerate version of the Euler–Genocchi polynomials. In addition, we introduce their higher-order version, namely the generalized degenerate Euler–Genocchi polynomials of order α, as a degenerate version of the generalized Euler–Genocchi polynomials of order α. The aim of this paper is to study certain properties and identities involving those polynomials, the generalized falling factorials, the degenerate Euler polynomials of order α, the degenerate Stirling numbers of the second kind, and the ‘alternating degenerate power sum of integers’ (see (Equation30)). The novelty of this paper is that it is the first paper that introduces the generalized degenerate Euler–Genocchi polynomials and the generalized degenerate Euler–Genocchi polynomials of order α, as degenerate versions of the polynomials introduced earlier in [Citation15–17].

The outline of this paper is as follows. In Section 1, we recall the degenerate exponentials, the degenerate Euler polynomials, the degenerate Euler polynomials of order α, and the degenerate Genocchi polynomials of order α. Also, we remind the reader of the degenerate Stirling numbers of the second and the incomplete Bell polynomials. Section 2 is the main result of this paper. We introduce the generalized degenerate Euler–Genocchi polynomials An,λ(r)(x), as a generalization of both the degenerate Euler polynomials and the degenerate Genocchi polynomials. In Theorem 2.1, the generalized falling factorials (x)n,λ are expressed in terms of An,λ(r)(x). A distribution property is derived for An,λ(r)(x) in Theorem 2.2. Then the generalized degenerate Euler–Genocchi polynomials of order α, An,λ(r,α)(x), are introduced as a higher-order version of An,λ(r)(x). We deduce a simple expression for An,λ(r,m)(x), with m a positive integer in Theorem 2.3. In Theorems 2.4 and 2.5, we observe certain relations between An,λ(r,α)(x) and the degenerate Euler polynomials of order α, En,λ(α)(x). In Theorem 2.6, En,λ(α)(x) are expressed in terms of the degenerate Stirling numbers of the second kind S2,λ(n,k). In Theorem 2.7, (x)n,λ are represented in terms of An,λ(r,α)(x) and S2,λ(n,k). In Theorem 2.8, we obtain an identity involving An,λ(r,α)(x), An,λ(r)(x), and En,λ(α1)(x). Let Tk,λ(n) denote the ‘alternating degenerate power sum of integers.’ In Theorem 2.9, we get a representation of Tk,λ(n) in terms of S2,λ(n,k). Finally, we get an expression of An,λ(r)(x) in terms of Tk,λ(n) and S2,λ(n,k) in Theorem 2.10. In the rest of this section, we recall the facts that are needed throughout this paper.

It is well known that the Euler polynomials are defined by (1) 2et+1ext=n=0En(x)tnn!,(see [122]).(1) The Genocchi polynomials are given by (2) 2tet+1ext=n=0Gn(x)tnn!,(see [122]),(2) When x = 0, Gn=Gn(0) are called the Genocchi numbers.

For any nonzero λR, the degenerate exponentials are defined by eλx(t)=(1+λt)xλ=n=0(x)n,λtnn!,eλ(t)=eλ1(t),(see [6]), where the generalized falling factorials are given by (x)0,λ=1,(x)n,λ=x(xλ)(x(n1)λ),(n1). In [Citation1,Citation2], Carlitz introduced the degenerate Euler polynomials which are given by 2eλ(t)+1eλx(t)=n=0En,λ(x)tnn!. When x = 0, En,λ=En,λ(0) are called the degenerate Euler numbers.

For any nonzero αC, the degenerate Euler polynomials of order α are defined by (2eλ(t)+1)αeλx(t)=n=0En,λ(α)(x)tnn!,(see [1,2]). When x = 0, En,λ(α)=En,λ(α)(0) are called the degenerate Euler numbers of order α.

Recently, the degenerate Genocchi polynomials of order α are defined by (2teλ(t)+1)αeλx(t)=n=0Gn,λ(α)(x)tnn!,(see [1114,22]). When x = 0, Gn,λ(α)=Gn,λ(α)(0) are called the degenerate Genocchi numbers of order α.

In particular, α=1, Gn,λ(x)=Gn,λ(1)(x) are called the degenerate Genocchi polynomials.

For n0, the degenerate Stirling numbers of the second kind are introduced by Kim–Kim as (x)n,λ=k=0nS2,λ(n,k)(x)k,(see [4,9]), where (x)0=1,(x)n=x(x1)(xn+1),(n1). For k0, the incomplete Bell polynomials are defined by 1k!(i=1xitii)k=n=kBn,k(x1,x2,,xnk+1)tnn!,(see [8,10,19,21]), where Bn,k(x1,x2,,xnk+1)=l1++lnk+1=kl1+2l2++(nk+1)lnk+1=nn!l1!l2!lnk+1!(x11!)l1(xnk+1(nk+1)!)lnk+1.

2. Generalized degenerate Euler–Genocchi numbers and polynomials

For rZ with r0, we consider the generalized degenerate Euler–Genocchi polynomials given by (3) 2treλ(t)+1eλx(t)=n=0An,λ(r)(x)tnn!.(3) Note that A0,λ(r)=A1,λ(r)(x)==Ar1,λ(r)(x)=0.

When x = 0, An,λ(r)=An,λ(r)(0) are called the generalized degenerate Euler–Genocchi numbers. Observe that (4) An,λ(0)(x)=En,λ(x),An,λ(1)(x)=Gn,λ(x),(n0).(4) From (Equation3), we have (5) An,λ(r)(x+1)=l=0n(nl)(1)nl,λAl,λ(r)(x),(n0).(5) By (Equation3), we get (6) n=0(x)n,λtnn!=eλx(t)=12trl=0Al,λ(r)(x)tll!(eλ(t)+1)=12l=0Al+r,λ(r)(x)tl(l+r)!(m=0(1)m,λm!tm+1)=12n=0l=0n(n+rl+r)n!(n+r)!(1)nl,λAl+r,λ(r)(x)tnn!+12n=0An+r,λ(r)(x)n!(n+r)!tnn!=n=012(l=0n(n+rl+r)(1)nl,λAl+r(r)(x)(n+r)r+An+r,λ(r)(x)(n+r)r)tnn!.(6) Therefore, by comparing the coefficients on both sides of (Equation6), we obtain the following theorem.

Theorem 2.1

For n0, we have (x)n,λ=12(n+r)r(l=0n1(n+rl+r)(1)nl,λAl+r,λ(r)(x)+2An+r,λ(r)(x)).

For mN with m1 (mod 2), we have (7) n=0An,λ(r)(x)tnn!=2treλ(t)+1eλx(t)=2treλm(t)+1l=0m1(1)leλl+x(t)=2(mt)r(eλ/m(mt)+1)1mrl=0m1(1)leλ/ml+xm(mt)=1mrl=0m1(1)l2(mt)reλ/m(mt)+1eλ/ml+xm(mt)=1mrl=0m1(1)ln=0An,λ/m(r)(l+xm)mntnn!=n=0mnrl=0m1(1)lAn,λ/m(r)(l+xm)tnn!.(7) Therefore, by comparing the coefficients on both sides of (Equation7), we obtain the following theorem.

Theorem 2.2

For mN with m1 (mod 2), we have An,λ(r)(x)=mnrl=0m1(1)lAn,λ/m(r)(l+xm).

For nonzero αC, and rZ with r0, we consider the generalized degenerate Euler–Genocchi polynomials of order α which are given by (8) tr(2eλ(t)+1)αeλx(t)=n=0An,λ(r,α)(x)tnn!.(8) When x = 0, An,λ(r,α)=An,λ(r,α)(0) are called the generalized degenerate Euler–Genocchi numbers of order α.

We mention here that these polynomials can be viewed as a special case of polynomials Ln(f,g,h) defined by the generating function f(t)gh(t)=n0Ln(f,g,h)tnn!, which are recently studied by Goubi [Citation23]. For this, one can take f(t)=treλx(t),g(t)=tα,h(t)=2eλ(t)+1. From (Equation8), we note that (9) An,λ(r,α)(x)=k=0n(nk)Ak,λ(r,α)(x)nk,λ=k=0n(nk)Ank,λ(r,α)(x)k,λ,(n0).(9) Let α=m (mN). Then, by (Equation8), we get (10) n=0An,λ(r,m)(x)tnn!=tr2m(eλ(t)+1)meλx(t)=tr2mk=0m(mk)eλk+x(t)=n=012mk=0m(mk)(k+x)n,λtn+rn!=n=r12mk=0m(mk)(k+x)nr,λ(n)rtnn!.(10) Therefore, by comparing the coefficients on both sides of (Equation10), we obtain the following theorem.

Theorem 2.3

For mN, we have An,λ(r,m)(x)=(n)r2mk=0m(mk)(k+x)nr,λ. When x = 0, we have (11) An,λ(r,m)=(n)r2mk=0m(mk)(k)nr,λ.(11)

From (Equation9) and (Equation11), we have (12) An,λ(r,m)(x)=k=0n(nk)Ank,λ(r,m)(x)k,λ=12mk=0nj=0m(nk)(mj)(j)nkr,λ(nk)r(x)k,λ.(12) By (Equation8), we get (13) n=rAn,λ(r,α)(x)tnn!=tr(2eλ(t)+1)αeλx(t)=trn=0En,λ(α)(x)tnn!=n=rEnr,λ(α)(x)n!(nr)!tnn!=n=r(n)rEnr,λ(α)(x)tnn!.(13)

Theorem 2.4

For n,r0 with nr, we have An,λ(r,α)(x)=(n)rEnr,λ(α)(x). In particular, for x = 0, we get (14) An,λ(r,α)=(n)rEnr,λ(α).(14)

By (Equation9) and (Equation14), we get (15) An,λ(r,α)(x)=k=0n(nk)Ank,λ(r,α)(x)k,λ=k=0nr(nk)Ank,λ(r,α)(x)k,λ(15) (16) =k=0nr(nk)(nk)rEnkr,λ(α)(x)k,λ=(n)rk=0nr(nrk)Enkr,λ(α)(x)k,λ=(n)r(x)nr,λ+(n)rk=0nr1(nrk)Enkr,λ(α)(x)k,λ.(16) Therefore, by (Equation15), we obtain the following theorem.

Theorem 2.5

For any nonzero αC and n,r0 with nr, we have An,λ(r,α)(x)=(n)r(x)nr,λ+(n)rk=0nr1(nrk)Enkr,λ(α)(x)k,λ.

Let f(t)=n=0antnn!C[[t]], where a00.

Let 0αC. We quote from [Citation24] the identity (17) (k=0aktkk!)α=a0α+n=1k=1n(α)ka0αkBn,k(a1,,ank+1)tnn!,(17) and for the proof, we refer to [Citation25].

From the definition of degenerate Stirling numbers of the second kind, we have (18) n=kS2,λ(n,k)tnn!=1k!(eλ(t)1)k=1k!j=0k(kj)(1)kjn=0(j)n,λtnn!=n=01k!j=0k(kj)(1)kj(j)n,λtnn!.(18) Comparing the coefficients on both sides of (Equation18), we have S2,λ(n,k)=1k!j=0k(kj)(1)kj(j)n,λ,(nk0). Also, we have (19) n=kS2,λ(n,k)tnn!=1k!(eλ(t)1)k=1k!(i=1(1)i,λi!ti)k=n=kBn,k((1)1,λ,(1)2,λ,,(1)nk+1,λ)tnn!.(19) Comparing the coefficients on both sides of (Equation19), we have (20) S2,λ(n,k)=Bn,k((1)1,λ,(1)2,λ,,(1)nk+1,λ).(20) We note that (21) 12(eλ(t)+1)=12(l=0(1)l,λl!tl+1)=1+12l=1(1)l,λtll!,(21) and (22) Bn,k((1)1,λ2,(1)2,λ2,,(1)nk+1,λ2)=12kBn,k((1)1,λ,,(1)nk+1,λ)=(12)kS2,λ(n,k).(22) Since we have n=0En,λ(α)tnn!=(1+i=112(1)i,λtii!)α, by taking a0=1 and ai=12(1)i,λ,(i1) we obtain the following from (Equation17) (23) E0,λ(α)=1,En,λ(α)=k=1n(α)k(12)kBn,k((1)1,λ,(1)2,λ,,(1)nk+1,λ),(n1).(23) Now, from (Equation20) and (Equation23) we obtain the following theorem.

Theorem 2.6

For n1, we have En,λ(α)=k=1n(α)k(12)kBn,k((1)1,λ,(1)2,λ,,(1)nk+1,λ)=k=1n(α)k(12)kS2,λ(n,k).

From Theorem 2.5, we have (24) An,λ(r,α)(x)=(n)r(x)nr,λ+(n)rk=0nr1(nrk)Enkr,λ(α)(x)k,λ=(n)r(x)nr,λ+(n)rk=0nr1(nrk)(x)k,λj=1nkr(α)j(12)jS2,λ(nkr,j)=(n)r(x)nr,λ+(n)rk=0nr1j=1nkr(nkk)(α)j(12)jS2,λ(nkr,j)(x)k,λ,(24) and (25) An,λ(r,α)=(n)rj=1nr(α)j(12)jS2,λ(nr,j),(25) where n,rZ with n>r0.

Replacing n by n + r in (Equation24), we get (26) An+r,λ(r,α)(x)=(n+r)r(x)n,λ+(n+r)rk=0n1j=1nk(α)j(12)j(n+rkk)×S2,λ(nk,j)(x)k,λ,(n1).(26) Thus, we have (27) (x)n,λ=1(n+r)rAn+r,λ(r,α)(x)k=0n1j=1nk(α)j(12)j(n+rkk)×S2,λ(nk,j)(x)k,λ,(n1).(27) Therefore, by (Equation27), we obtain the following theorem.

Theorem 2.7

For n1, we have (x)n,λ=1(n+r)rAn+r,λ(r,α)k=0n1j=1nk(α)j(12)j(n+rkk)S2,λ(nk,j)(x)k,λ.

For mN with m1 (mod 2), we have (28) n=0k=0m1(1)kAn,λ(r,α)(x+km)tnn!=k=0m1(1)kn=0An,λ(r,α)(x+km)tnn!=k=0m1(1)ktr(2eλ(t)+1)αeλx+km(t)=(2eλ(t)+1)αtreλxm(t)k=0m1(1)keλkm(t)=(2eλ(t)+1)αmr(tm)remλx(tm)1+eλ(t)1+eλ1/m(t)=(2eλ(t)+1)α1mr(tm)remλx(tm)21+emλ(tm)=j=0Ej,λ(α1)tjj!l=0Al,mλ(r)(x)1mlrtll!=n=0l=0n(nl)Al,mλ(r)(x)1mlrEnl,λ(α1)tnn!.(28) Here we note that the condition m1 (mod 2) is used in the rightmost sum of the second line of (Equation28). Therefore, by comparing the coefficients on both sides of (Equation28), we obtain the following theorem.

Theorem 2.8

For mN with m1 (mod 2), we have k=0m1(1)kAn,λ(r,α)(x+km)=l=0n(nl)Al,mλ(r)(x)1mlrEnl,λ(α1).

Note that E0,λ(0)=1, and En,λ(0)=0, (nN).

Let us take α=1 in (Equation28). Then we have (29) k=0m1(1)kAn,λ(r)(x+km)=An,mλ(r)(x)(1m)nr,(29) where mN with m1 (mod 2).

The alternating degenerate power sum of integers Tk,λ(n) is defined by (30) Tk,λ(n)=i=0n(1)i(i)k,λ,(kN{0}).(30)

Remark

Tk(n)=i=0n(1)iik is defined in [Citation3].

Note that (31) i=0n(1)ieλi(t)=k=0i=0n(1)i(i)k,λtkk!=k=0Tk,λ(n)tkk!,(31) and (32) i=0n(1)ieλi(t)=1(1)n+1eλn+1(t)eλ(t)+1=12k=0(Ek,λ(1)n+1Ek,λ(n+1))tkk!.(32) By (Equation31) and (Equation32), we get (33) Tk,λ(n)=12(Ek,λ+(1)nEk,λ(n+1)),(n,k0).(33) It is easy to show that (34) 1(1)n+1eλn+1(t)=1(1)n+1l=0(n+1)l,λl!tl=(1+(1)n)+(1)ni=1(n+1)i,λi!ti.(34) For a fixed n, let αk,λ be the sequence with (35) α0,λ=1+(1)n,αk,λ=(1)n(n+1)k,λ,(k1).(35) Then we have (36) 1(1)n+1eλn+1(t)=k=0αk,λtkk!.(36) Now, we observe that (37) 12n=0En,λtnn!=12(1+12i=1(1)i,λi!ti)1=12+12n=1k=1n(1)kk!(12)kBn,k((1)1,λ,,(1)nk+1,λ)tnn!=12+12n=1k=1n(1)kk!(12)kS2,λ(n,k)tnn!.(37) From (Equation37), we see that (38) E0,λ=1,En,λ=k=1n(1)kk!(12)kS2,λ(n,k),(n1).(38) From (Equation31) and (Equation36), we note that (39) k=0Tk,λ(n)tkk!=i=0n(1)ieλi(t)=1(1)n+1eλn+1(t)1+eλ(t)=l=0αl,λtll!j=012Ej,λtjj!=k=012j=0k(kj)Ej,λαkj,λtkk!.(39) Using (Equation39), for k1, we have (40) Tk,λ(n)=12j=0k(kj)Ej,λαkj,λ=12E0,λαk,λ+12Ek,λα0,λ+12j=1k1(kj)Ej,λαkj,λ=(1)n2(n+1)k,λ+(1+(1)n)j=1k(1)jj!(12)j+1S2,λ(k,j)+j=1k1(kj)i=1j(1)ii!(12)i+1S2,λ(j,i)(1)n(n+1)kj,λ=(1)n2(n+1)k,λ+(1+(1)n)j=1k(1)jj!(12)j+1S2,λ(k,j)+(1)nj=1k1i=1j(kj)(1)ii!(12)i+1S2,λ(j,i)(n+1)kj,λ.(40) Therefore, by (Equation40), we obtain the following theorem.

Theorem 2.9

For n0 and k1, we have Tk,λ(n)=(1)n2(n+1)k,λ+(1+(1)n)j=1k(1)jj!(12)j+1S2,λ(k,j)+(1)nj=1k1(kj)(n+1)kj,λi=1j(1)ii!(12)i+1S2,λ(j,i).

From Theorem 2.9, we note that (41) Tk,λ(2n)=12(2n+1)k,λ+2j=1k(1)jj!(12)j+1S2,λ(k,j)+j=1k1(kj)(2n+1)kj,λi=1j(1)ii!(12)i+1S2,λ(j,i),(41) and (42) Tk,λ(2n+1)=2k1(n+1)k,λ/2j=1k1(kj)(n+1)kj,λ/2i=1j(1)ii!2kji1S2,λ(j,i).(42) From (Equation24), we have (43) An,λ(r)(x)=(n)r(x)nr,λ+(n)rk=0nr1j=1nkr(nrk)(1)j(12)jS2,λ(nkr,j)(x)k,λ=(n)r(x)nr,λ+(n)rk=0nr1j=1nkr(nrk)j!(12)jS2,λ(nkr,j)(x)k,λ.(43) Thus, by (Equation43), we get (44) An,λ(r)(x+im)=(n)r(x+im)nr,λ+(n)rk=0nr1j=1nkr(nrk)j!(12)j×S2,λ(nkr,j)(x+im)k,λ.(44) From (Equation44), we can derive the following Equation (Equation45). (45) i=0m1(1)iAm,λ(r)(x+im)=(n)ri=0m1(1)i(x+im)nr,λ+(n)rk=0nr1j=1nkrj!(12)j×(nrk)S2,λ(nkr,j)i=0m1(1)i(x+im)k,λ.(45) Now, we observe that (46) i=0m1(1)i(x+im)k,λ=1mki=0m1(1)i(x+i)k,mλ=1mki=0m1(1)il=0k(kl)(i)l,mλ(x)kl,mλ=1mkl=0k(kl)(x)kl,mλTl,mλ(m1)(46) From (Equation45) and (Equation46), we have (47) i=0m1(1)iAn,λ(r)(x+im)=(n)r1mnrl=0nr(nrl)(x)nlr,mλTl,mλ(m1)+(n)rk=0nr1j=1nkrj!(12)j(nrk)S2,λ(nkr,j)1mkl=0k(kl)×Tl,mλ(m1)(x)kl,mλ.(47) For mN with m1 (mod 2), by Theorem 2.2 and (Equation47), we get (48) An,λ(r)(x)=mnrl=0m1(1)lAn,λ/m(r)(l+xm)=(n)rl=0nr(nrl)(x)nlr,λTl,λ(m1)+(n)rk=0nr1j=1nkrl=0kj!(12)j(nrk)(kl)mnrk×S2,λ(nkr,j)Tl,λ(m1)(x)kl,λ.(48) Therefore, by (Equation48), we obtain the following theorem.

Theorem 2.10

For mN with m1 (mod 2), we have

An,λ(r)(x)=(n)rl=0nr(nrl)(x)nlr,λTl,λ(m1)+(n)rk=0nr1j=1nkrl=0kj!(12)j(nrk)(kl)×mnrkS2,λ(nkr,j)Tl,λ(m1)(x)kl,λ.

3. Conclusion

In recent years, various degenerate versions of many special numbers and polynomials have been explored by using different methods as aforementioned in the introduction.

In this paper, we introduced the generalized degenerate Euler–Genocchi polynomials as a degenerate version of the Euler–Genocchi polynomials. In addition, we introduced their higher-order version, namely the generalized degenerate Euler–Genocchi polynomials of order α, as a degenerate version of the generalized Euler–Genocchi polynomials of order α. Then we studied certain properties and identities involving those polynomials, the generalized falling factorials, the degenerate Euler polynomials of order α, the degenerate Stirling numbers of the second kind, and the alternating degenerate power sum of integers.

It is one of our future projects to continue to study various degenerate versions of some special numbers and polynomials and to find their applications to physics, science and engineering as well as to mathematics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Research Foundation of Korea [grant number NRF-2021R1F1A1050151].

References

  • Carlitz L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979;15:51–88.
  • Carlitz L. A degenerate Staudt–Clausen theorem. Arch Math (Basel). 1956;7:28–33.
  • Kim BM, Jang L-C, Kim W, et al. Degenerate Changhee–Genocchi numbers and polynomials. J Inequal Appl. 2017;Article ID 294, 10 pp.
  • Kim DS, Kim T. A note on a new type of degenerate Bernoulli numbers. Russ J Math Phys. 2020;27(2):227–235.
  • Kim DS, Kim T, Lee S-H, et al. Some new formulas of complete and incomplete degenerate Bell polynomials. Adv Differ Equ. 2021;Article ID 326, 10 pp.
  • Kim T, Kim DS. On some degenerate differential and degenerate difference operators. Russ J Math Phys. 2022;29(1):37–46.
  • Kim T, Kim DS. Some identities on truncated polynomials associated with degenerate Bell polynomials. Russ J Math Phys. 2021;28(3):342–355.
  • Kim T, Kim DS, Jang G-W. On degenerate central complete Bell polynomials. Appl Anal Discrete Math. 2019;13(3):805–818.
  • Kim T, Kim DS. Degenerate Whitney numbers of first and second kind of dowling lattices. Russ J Math Phys. 2022;29(3):358–377.
  • Kim T, Kim DS, Kwon J, et al. Some identities involving degenerate r-Stirling numbers. Proc Jangjeon Math Soc. 2022;25(2):245–252.
  • Kim T, Kim DS, Kwon J, et al. Some properties of degenerate complete and partial Bell polynomials. Adv Differ Equ. 2021;Article ID 304, 12 pp.
  • Kim T, Kim DS, Kwon J, et al. Representation by degenerate Genocchi polynomials. J Math. 2022;Article ID 2339851, 11 pp.
  • Kwon HI, Jang L-C, Kim DS, et al. On modified degenerate Genocchi polynomials and numbers. J Comput Anal Appl. 2017;23(3):521–529.
  • Lee DS, Kim HK. On the new type of degenerate poly-Genocchi numbers and polynomials. Adv Differ Equ. 2020;Article ID 431, 15 pp.
  • Belbachir H, Hadj-Brahim S, Rachidi M. Another detrimental approach for a family of Appell polynomials. Filomat. 2018;12:4155–4164.
  • Belbachir H, Hadj-Brahim S. Some explicit formulas for Euler–Genocchi polynomials. Integers. 2019;19:Article ID ♯A28, 14 pp.
  • Goubi M. On a generalized family of Euler–Genocchi polynomials. Integers. 2021;21:Article ID A48, 13 pp.
  • Aydin MS, Acikgoz M, Araci S. A new construction on the degenerate Hurwitz-zeta function associated with certain applications. Proc Jangjeon Math Soc. 2022;25(2):195–203.
  • Comtet L. Advanced combinatorics: the art of finite and infinite expansions. Revised and enlarged edition. Dordrecht: D. Reidel Publishing Co.; 1974. xi+343 pp. ISBN: 90-277-0441-4-05-02.
  • Kim T. On the alternating sums of powers of consecutive integers. J Anal Comput. 2005;1(2):117–120.
  • Kim T, Kim DS, Jang L-C, et al. Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials. Adv Differ Equ. 2021;Article ID 101, 12 pp.
  • Usman T., Aman M., Khan O., et al. Construction of partially degenerate Laguerre–Genocchi polynomials with their applications. AIMS Math. 2020;5(5):4399–4411.
  • Goubi M. On polynomials associated to product and composition of generating functions. Online J Anal Comb. 2021;16:Article ID #10.
  • Goubi M. Formulae of special numbers and polynomials by algebraic method. JMPES. 2022;3(2):47–54.
  • Goubi M. Explicit formula of a new class of q-hermite-based apostol-type polynomials and generalization. Notes Number Theory Discrete Math. 2020;26:93–102.