287
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Series involving degenerate harmonic numbers and degenerate Stirling numbers

, , &
Article: 2297045 | Received 14 Jul 2023, Accepted 13 Dec 2023, Published online: 21 Jan 2024

ABSTRACT

Recently, degenerate harmonic numbers and degenerate hyperharmonic numbers are introduced by Kim-Kim. In this paper, we study the series involving the degenerate harmonic numbers and degenerate Stirling numbers and investigate those properties.

MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

Many mathematicians introduced the special polynomials and numbers and their degenerate versions, and obtained some combinatorial identities and properties associated with them [Citation1–12]. Kim-Kim [Citation13] derived some identities involving the degenerate harmonic numbers and certain finite sums of general nature by using certain degenerate differential and degenerate difference operators. Kim et al. [Citation10] introduced the degenerate harmonic numbers and degenerate hyperharmonic numbers, and obtained some identities by using the umbral calculus. Kim-Kim [Citation11] also defined the discrete harmonic numbers and derived some identities related them. Kim et al. [Citation9] derived some identities involving generalized harmonic numbers and generalized harmonic functions. Kim-Kim [Citation14] introduced the degenerate harmonic and degenerate higher-order harmonic numbers and derived several infinite sums involving the degenerate higher-order harmonic numbers can be represented by using the degenerate zeta functions.

Dolgy et al. [Citation15] derived some properties and identities involving the degenerate harmonic numbers and degenerate hyperharmonic numbers in connection with degenerate Stirling numbers of the first kind. Lo´pez-Bonilla and Lo´pez-Va´zquez [Citation8] obtained some identities of the harmonic numbers in terms of Stirling numbers of the second kind. Wang et al. [Citation12] investigated some identities involving generalized harmonic numbers with degenerate Changhee-Genocchi sequences and two kinds of degenerate Stirling numbers and other special numbers. Kim-Kim [Citation5, Citation6] introduced the degenerate harmonic numbers, degenerate hyperharmonic numbers and derived some explicit expressions of the degenerate hyperharmonic numbers in terms of degenerate harmonic numbers and degenerate r-Stirling numbers of the second kind and other polynomials and numbers.

In particular, we are interested in degenerate harmonic numbers and degenerate Stirling numbers. In this paper, we introduce some series of the degenerate harmonic numbers and degenerate Stirling numbers. At the first,we give some definitions and identities needed in this paper.

For λR, the degenerate exponential function is defined by (1) eλx(t)=(1+λt)xλ=n=0(x)n,λtnn!,(1) (see [Citation5,Citation6,Citation16–18]). Where (x)0,λ=1, (x)n,λ=x(xλ)(x(n1)λ),(n1), (see [Citation2–6, Citation16–18]).

Note that limλ0eλx(t)=ext.When x = 1, eλ(t)=eλ1(t).

Let logλ(t) be the inverse function of eλ(t), so we have logλ(eλ(t))=eλ(logλ(t))=t. Then, we easily see that (2) logλ(t)=1λ(tλ1),(2) (see [Citation19]). From (Equation2), we note that (3) logλ(1+t)=1λ((1+t)λ1)=n=1λn1(1)n,1/λn!tn,(3) (see [Citation6,Citation17,Citation19]). The harmonic numbers are defined by (4) H0=0,Hn=1+12++1n,(n1),(4) (see [Citation6–10,Citation20–22]). From (Equation4), we note that the generating function of harmonic numbers are given by (5) 11tlog(1t)=n=1Hntn,(|t|<1),(5) (see [Citation6,Citation8,Citation9,Citation20,Citation21,Citation23]). Recently, the degenerate harmonic numbers are defined by (6) logλ(1t)1t=n=1Hn,λtn,(6) (see [Citation5,Citation6,Citation13,Citation24]). By (Equation6), we have (7) Hn,λ=k=1n(1)k,1/λλk1k!(1)k1,H0,λ=0,(7) (see [Citation5,Citation6,Citation13]). The degenerate Stirling numbers of the second kind are defined by (8) (x)n,λ=n=0S2,λ(n,k)(x)n,(n0),(8) (see [Citation17,Citation19,Citation25]). Where (x)0=1,(x)n=x(x1)(xn+1), (n1).

From (Equation8), we note that (9) 1k!(eλ(t)1)k=n=kS2,λ(n,k)tnn!,(k0),(9) (see [Citation17,Citation19,Citation25]). On the other hand, we get (10) 1k!(eλ(t)1)k=1k!l=0k(kl)(1)kleλl(t)=n=0(1k!l=0k(kl)(1)kl(l)n,λ)tnn!.(10) Thus, by (Equation9) and (Equation10), we have (11) 1k!l=0k(kl)(1)kl(l)n,λ={S2,λ(n,k),if nk,0,if n<k,(11) (see [Citation5,Citation6,Citation19,Citation24]). For n0,r1, the degenerate hyperharmonic numbers are introduced by Kim-Kim to be (12) Hn,λ(1)=Hn,λ,H0,λ(r)=0(r1),Hn,λ(r)=k=1nHk,λ(r1),(r2,n1),(12) (see [Citation10]). From (Equation12), we have (13) Hn,λ(r+1)=(n+rr)(kλr)(Hn+r,λHr,λ),(n,rN),(13) (see [Citation5,Citation6]). By (Equation12) and (Equation13), we get (14) 1(1t)rlogλ(1t)=n=1Hn,λ(r)tn,(14) (see [Citation10,Citation13]). In this paper, we study the series involving degenerate harmonic and hyperharmonic numbers and degenerate Stirling numbers of the second kind. In addition, we give some new identities related to degenerate harmonic and hyperharmonic numbers.

2. Series involving degenerate harmonic numbers and degenerate stirling numbers

In this section, we investigate some identities and properties involving degenerate harmonic numbers and degenerate hyperharmonic numbers by the degenerate logarithmic functions. Meanwhile, we also derive some series associated with degenerate Stirling numbers and degenerate r-Stirling numbers.

By binomial transformation, we get (15) an=k=0n(nk)(1)nkbkbn=k=0n(nk)ak,(n0).(15)

Theorem 2.1

For nN, we have Hn,λ=k=1n(nk)λk1k!(1)k,1/λ,and λn1n!(1)n,1/λ(1)n1=k=1n(nk)Hk,λ(1)k1.

Proof.

From (Equation3) and (Equation6), we note that (16) n=1λn1(1)n,1/λn!(1)n1tn=logλ(1t)=logλ(1+t1t)=1(1t)(1+t1t)(logλ(1+t1t))=k=1Hk,λ(1)k1tk(11t)k+1=k=1Hk,λ(1)k1tkl=0(k+lk)tl=n=0(k=1n(nk)Hk,λ(1)k1)tn.(16) Thus, by comparing the coefficients on the both sides of the (Equation16), we get (17) λn1(1)n,1/λn!(1)n1=k=1n(nk)Hk,λ(1)k1,(n1).(17) From (Equation15) and (Equation17), we get (18) Hn,λ=k=1n(nk)λk1k!(1)k,1/λ,(n1).(18) Therefore, by (Equation17) and (Equation18), we obtain the Theorem 2.1.

Theorem 2.2

For nN, we have λn1n!(1)n,1/λ(1)n1=k=1n(n+rk+r)Hk,λ(r+1)(1)k1.

Proof.

By (Equation3) and (Equation14), we get (19) n=1λn1(1)n,1/λn!(1)n1tn=logλ(1t)=logλ(1+t1t)=logλ(1+t1t)(1t)r+1(1+t1t)r+1=k=1Hk,λ(r+1)(1)k1tk(11t)k+r+1=k=1Hk,λ(r+1)(1)k1tkl=0(k+r+lk+r)tl=n=1(k=1n(n+rk+r)Hk,λ(r+1)(1)k1)tn.(19) Therefore, by (Equation19), we obtain the Theorem 2.2.

Theorem 2.3

For n1, we have Hn,λ(r+1)=k=1n(n+rk+r)λk1k!(1)k,1/λ.

Proof.

Let (20) an=k=0n(n+rk+r)(1)k1bk.(20) By (Equation20), we have (21) k=0n(n+rk+r)(1)k1ak=k=0n(n+rk+r)(1)k1j=0k(k+rj+r)(1)j1bj=j=0nbj(1)j1k=jn(n+rk+r)(k+rj+r)(1)k1=j=0nbj(1)j1k=0nj(n+rk+j+r)(k+j+rj+r)(1)k1+j=j=0nbj(n+rj+r)k=0nj(njk)(1)k=bn.(21) Thus, by Theorem 2.2 and (Equation21), we obtain the Theorem 2.3.

Proposition 2.4

For αR, we have n=0(x1+x)n(1)n(αn)k=0n(nk)ak=1(1+x)αk=0(αk)(1)kakxk.

Proof.

For αR, we have (22) n=0(x1+x)n(1)n(αn)k=0n(nk)ak=k=0nakn=k(x1+x)n(1)n(αn)(nk)=k=0nakn=0(x1+x)n+k(1)n+k(αn+k)(n+kk)=k=0nak(x1+x)k(1)kn=0(x1+x)n(1)n(αk)(αkn)=k=0nak(1)k(x1+x)k(αk)(1x1+x)αk=1(1+x)αk=0(αk)(1)kxkak.(22) Therefore, by (Equation22), we obtain the Proposition 2.4.

Theorem 2.5

For αR, we have 1(1+x)αk=1(αk)Hk,λxk=n=1(x1+x)n(αn)λn1n!(1)n,1/λ.

Proof.

Let us take an=(1)nHn,λ, (n1),a0=0.

From (Equation22), we have (23) 1(1+x)αk=1(αk)Hk,λxk=n=1(x1+x)n(1)n(αn)k=1n(nk)(1)kHk,λ=n=1(x1+x)n(1)n(αn)λn1n!(1)n,1/λ(1)n=n=1(x1+x)n(αn)λn1n!(1)n,1/λ.(23) In particular, let x=1, α=mN, we have 12mk=1(mk)Hk,λ=n=1(12)n(mn)λn1n!(1)n,1/λ.Therefore, by (Equation23), we obtain the Theorem 2.5.

Corollary 2.6

For αR, we have (11+x)αk=1(αk)(1)kλk1k!(1)k,1/λxk=n=1(x1+x)n(1)n(αn)Hn,λ.

Proof.

From (Equation18), we note that (24) (11+x)αk=1(αk)(1)kλk1k!(1)k,1/λxk=n=1(x1+x)n(1)n(αn)k=1n(nk)(1)k,1/λk!λk1=n=1(x1+x)n(1)n(αn)Hn,λ.(24) Therefore, by (Equation24), we obtain the Corollary 2.6.

Theorem 2.7

For αR,rN, we have n=0(x1+x)n(1)n(α+rn+r)k=0n(n+rk+r)ak=1(1+x)αk=0(α+rk+r)(1)kakxk.

Proof.

Now, we observe that (25) n=0(x1+x)n(1)n(α+rn+r)k=0n(n+rk+r)ak=k=0akn=0(x1+x)n+k(1)n+k(α+rn+k+r)(n+r+kk+r)=k=0ak(x1+x)k(1)kn=0(x1+x)n(1)n(α+rn+k+r)(n+r+kk+r)=k=0ak(x1+x)k(1)k(α+rk+r)n=0(x1+x)n(1)n(αkn)=k=0ak(x1+x)k(1)k(1x1+x)αk(α+rk+r)=1(1+x)αk=0(α+rk+r)(1)kakxk.(25) where αR and rN.

Therefore, by (Equation25), we obtain the Theorem 2.7.

Theorem 2.8

For αR and rN, we have 1(1+x)αk=0(α+rk+r)Hk,λ(r+1)xk=n=0(x1+x)n(α+rk+r)λn1n!(1)n,1/λ.

Proof.

Let us take ak=Hk,λ(r+1)(1)k, a0=0.

Then, by Theorem 2.7, we get (26) 1(1+x)αk=0(α+rk+r)Hk,λ(r+1)xk=n=0(x1+x)n(1)n(α+rk+r)k=0n(n+rk+r)(1)kHk,λ(r+1)=n=0(x1+x)n(1)n(α+rk+r)λn1n!(1)n,1/λ(1)n=n=0(x1+x)n(α+rk+r)λn1n!(1)n,1/λ.(26) Therefore, by (Equation26), we obtain the Theorem 2.8.

Theorem 2.9

For αR, we have 1(1+x)αk=0(αk)(k)m,λxk=n=0m(x1+x)n(αn)n!S2,λ(m,n),(|x|<1).

Proof.

By (Equation15) and let ak=(1)k(k)m,λ, (m0) in (Equation22). Then we have (27) 1(1+x)αk=0(αk)(k)m,λxk=n=0(x1+x)n(αn)k=0n(nk)(1)nk(k)m,λ=n=0m(x1+x)n(αn)n!S2,λ(m,n).(27) Therefore, by (Equation27), we obtain the Theorem 2.9.

Let us take α=1/2 and x=1 in Theorem 2.9. Then we have k=0(2kk)(1)k(k)m,λ22k=12n=0m(12)3n(2nn)(1)nn!S2,λ(m,n).Recently, Kim-Kim introduced r-Stirling numbers of the second kind to be (28) (x+r)n,λ=k=0n{n+rk+r}r,λ(x)k,(n0).(28)

Theorem 2.10

For rN,αR, we have 1(1+x)αk=0(αk)(k+r)m,λxk=n=0m(x1+x)n(αn)n!{m+rn+r}r,λ.

Proof.

For (Equation28), we note that (29) 1k!(eλ(t)1)keλr(t)=n=k{n+rk+r}r,λtnn!.(29) On the other hand, we get (30) 1k!(eλ(t)1)keλr(t)=1k!l=0k(kl)(1)kleλl+r(t)=n=0(1k!l=0k(kl)(1)kl(l+r)n,λ)tnn!.(30) By (Equation29) and (Equation30), we get (31) l=0k(kl)(1)kl(l+r)n,λ={k!{n+rk+r}r,λ,if nk,0,if n<k.(31) For rN, let us take ak=(1)k(k+r)m,λ, (m0) in (Equation22). Then, by (Equation31), we get (32) 1(1+x)αk=0(αk)(k+r)m,λxk=n=0(x1+x)n(αn)k=0m(nk)(1)nk(k+r)m,λ=n=0m(x1+x)n(αn)n!{m+rn+r}r,λ.(32) Therefore, by (Equation32), we obtain the Theorem 2.10.

3. Conclusion

In this paper, we introduce the degenerate harmonic numbers and degenerate Stirling numbers, which are the degenerate versions of the harmonic numbers and Stirling numbers. We obtain some series involving degenerate harmonic numbers, degenerate hyperharmonic numbers and degenerate falling factorial in Theorems 2.1, 2.2, 2.3 and 2.5. Meanwhile, some identities related to degenerate harmonic numbers, degenerate hyperharmonic numbers and combinatorial numbers are obtained in Theorems 2.7 and 2.8. In addition, we investigate the relations between the degenerate falling factorial and degenerate Stirling numbers of the second kind and degenerate r-Stirling numbers of the second kind in Theorems 2.9 and 2.10.

We will continue to study various degenerate versions of many special polynomials and numbers and their various applications in physics, science and other fields.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the National Natural Science Foundation of China (No. 12271320), Key Research and Development Program of Shaanxi (No. 2023-ZDLGY-02).

References

  • Praveen A, Takao K. A short note on Laguerre polynomials. preprint, 2020. arXiv:2004.05996.
  • Lehmer DH. Interesting series involving the central binomial coefficient. Am Math Mon. 1985;92:449–457. doi: 10.1080/00029890.1985.11971651.
  • Simsek Y. Combinatorial sums and binomial identities associated with the beta-type polynomials. Hacet J Math Stat. 2018;47:1144–1155. doi: 10.15672/HJMS.2017.505.
  • Kim DS, Kim T. Normal ordering associated with λ-Whitney numbers of the first kind in λ-shift algebra. Russ J Math Phys. 2023;30:310–319. doi: 10.1134/S1061920823030044.
  • Kim T, Kim DS. Combinatorial identities involving degenerate harmonic and hyperharmonic numbers. Adv Appl Math. 2023;148:102535–102550. doi: 10.1016/j.aam.2023.102535.
  • Kim T, Kim DS. Some identities on degenerate hyperharmonic numbers. Georgian Math J. 2023;30:255–262. doi: 10.1515/gmj-2022-2203.
  • Tuladhar BM, López-Bonilla J, López-Vázquez R. Identities for harmonic numbers and binomial relations via Legendre polynomials. J Sci Eng Technol. 2017;13:92–97. doi: 10.3126/KUSET.V13I2.21287.
  • López-Bonilla J, López-Vázquez R. Harmonic and Stirling numbers. Afr J Basic & Appl Sci. 2020;12:32–33. doi: 10.5829/idosi.ajbas.2020.32.33.
  • Kim DS, Kim H, Kim T. Some identities on generalized harmonic numbers and generalized harmonic functions. Demonstr Math. 2023;56:1–9. doi: 10.1515/dema-2022-0229.
  • Kim T, Kim DS, Kim HK. Some identities of degenerate harmonic and degenerate hyperharmonic numbers arising from umbral calculus. Open Math. 2023;21:20230124–20230136. doi: 10.1515/math-2023-0124.
  • Kim T, Kim DS. Some relations of two type 2 polynomials and discrete harmonic numbers and polynomials. Symmetry. 2020;12:905–921. doi: 10.3390/sym12060905.
  • Wang R, Wuyungaowa. Generalized harmonic numbers Hn,k,r(α,β) with combinatorial sequences. J Appl Math Phys. 2022;10(5):1602–1618. doi: 10.4236/jamp.2022.105111.
  • Kim T, Kim DS. On some degenerate differential and degenerate difference operators. Russ J Math Phys. 2022;29:37–46. doi: 10.1134/S1061920822010046.
  • Kim T, Kim DS. Some identities on degenerate harmonic and degenerate higher-order harmonic numbers. preprint, 2018. arXiv:2308.15013, p. 1–11.
  • Dolgy DV, Kim DS, Kim HK, et al. Degenerate harmonic and hyperharmonic numbers. Proc Jangjeon Math Soc. 2023;26:259–268. doi: 10.17777/pjms2023.26.3.259.
  • Aydin MS, Acikgoz M, Araci S. A new construction on the degenerate Hurwitz-zeta function associated with certain applications. Proc Jangjeon Math Soc. 2020;25:195–203. doi: 10.17777/pjms2022.25.2.195.
  • Kim T, Kim DS. Some results on degenerate Fubini and degenerate Bell polynomials. Appl Anal Discret Math. 2022;2022:35–35.
  • Khan WA, Muhyi A, Ali R, et al. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021;6:12680–12697. doi: 10.3934/math.2021731.
  • Kim DS, Kim T. A note on a new type of degenerate Bernoulli numbers. Russ J Math Phys. 2020;27:227–235. doi: 10.1134/S1061920820020090.
  • Comtet L. Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. Dordrecht: D. Reidel Publishing Co.; 1974. ISBN: 90-277-0441-4.
  • Graham RL, Knuth DE, Patashnik O. Concrete mathematics. A foundation for computer science. 2nd ed. Reading (MA): Addison-Wesley Publishing Company; 1994. ISBN: 0-201-55802-5.
  • Roman S. The umbral calculus. New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]; 1984. (Pure and applied mathematics; 111). ISBN: 0-12-594380-6.
  • Matiyasevich Y. Unsolved problems: what divisibility properties do generalized harmonic numbers have? Am Math Mon. 1992;99:74–75. doi: 10.1080/00029890.1992.11995809.
  • Kim TK, Kim DS. Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers. Russ J Math Phys. 2023;30:62–75. doi: 10.1134/s1061920823010041.
  • Carlitz L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util Math. 1979;15:51–88.