Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 44, 2003 - Issue 3
74
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

AN INCOMPRESSIBLE NAVIER-STOKES MODEL IMPLEMENTED ON NONSTAGGERED GRIDS

&
Pages 277-394 | Published online: 02 Feb 2011
 

Abstract

The present study aims to develop an effective finite-difference model for solving incompressible Navier-Stokes equations. For the sake of programming simplicity, discretization of equations is made on nonstaggered grids without oscillatory solutions arising from the decoupling of the velocity and pressure fields. For the sake of computational efficiency, both segregated and alternating direction implicit (ADI) solution algorithms are employed to reduce the matrix size and, in turn, the CPU time. For the sake of numerical accuracy, a convection-diffusion-reaction finite-difference scheme is employed to provide nodally exact solutions in each ADI solution step. The convective instability problem is thus eliminated, since each convective term is modeled analytically even in multidimensional cases. The validity of the proposed numerical model is rigorously justified by solving one- and two-dimensional problems, which are amenable to analytical solutions. The simulated solutions for the scalar prototype equation agree well with the exact solutions and provide a very high spatial rate of convergence. The same is true for the simulated results of the Navier-Stokes equations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.