79
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A COMPARATIVE STUDY OF THE PREPARATION AND CHARACTERIZATION OF AROMATIC AND ALIPHATIC BISMALEIMIDES TO PRODUCE MODIFIED SILICONIZED EPOXY INTERCROSSLINKED MATRICES FOR ENGINEERING APPLICATIONS

, &
Pages 561-576 | Published online: 07 Feb 2007
 

Abstract

A novel hybrid intercrosslinked network of hydroxyl-terminated polydimethylsiloxane modified epoxy and bismaleimides [N,N′-bismaleimido-4,4′-diphenylmethane and 1,6-bis(maleimido)hexane] matrix systems were developed. Epoxy resin was modified with 5, 10, and 15% (wt%) of hydroxyl-terminated polydimethylsiloxane using γ-aminopropyltriethoxysilane as crosslinking agent and dibutyltindilaurate as catalyst. The reaction between hydroxyl-terminated polydimethylsiloxane and epoxy resin was confirmed by IR spectral studies. The siliconized epoxy systems were further modified with 5, 10, and 15% (wt%) of both aromatic and aliphatic bismaleimides separately. The castings and E-glass fiber-reinforced composites prepared were characterized for their mechanical properties. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the matrix samples were also performed to determine the glass transition temperature (T g) and thermal degradation temperature of the hybrid intercrosslinked systems. Data obtained from mechanical studies and thermal characterization indicate that the introduction of siloxane into epoxy resin improves the toughness and thermal stability, with reduction in strength and modulus values. The incorporation of aromatic bismaleimide into epoxy resin improved both tensile strength and thermal properties, whereas it was observed that the incorporation up to 5% of aliphatic bismaleimide into epoxy resin decreased the stress–strain value and above 5% increased the strength properties. However, the introduction of both aromatic and aliphatic bismaleimides (aromatic and aliphatic) into siliconized epoxy resin influenced both mechanical and thermal properties according to the percentage content.

5.0 ACKNOWLEDGMENTS

The authors thank Dr. T. S. Prahlad, Director, National Aerospace Laboratories, Bangalore, India, for providing research facilities. The authors also acknowledge Ms. Vanaja and Ms. Sandhya Rao for their valuable assistance in material characterization, and the Council of Scientific Industrial Research (CSIR) for the financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.