45
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of Intensities and Orientations of Magnets Controlling Melt Flow During Solidification

, , , , &
Pages 695-718 | Received 31 Mar 2003, Accepted 29 Dec 2003, Published online: 17 Aug 2006
 

Abstract

When growing large single crystals from a melt, it is desirable to minimize thermally induced convection effects so that solidification is achieved predominantly by thermal conduction. It is expected that under such conditions any impurities that originate from the walls of the crucible will be less likely to migrate into the mushy region and consequently deposit in the crystal. It is also desirable to achieve a distribution of the dopant in the crystal that is as uniform as possible. A finite volume method and a least-squares spectral finite element method were used to develop accurate computer codes for prediction of solidification from a melt under the influence of externally applied magnetic fields. A hybrid constrained optimization algorithm and a semi-stochastic self-adapting response surface optimizer were then used with these solidification analysis codes to determine the distributions of the magnets that will minimize the convective flow throughout the melt or in desired regions of the melt only.

Acknowledgements

M.J.C. is grateful for the postdoctoral fellowship received from CNPq, a Brazilian council for scientific and technological development, and from University of Texas at Arlington. This work was supported in part by the NSF grant DMS-0073698.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.