67
Views
32
CrossRef citations to date
0
Altmetric
Original

Melatonin Protects Against Oxidative Stress Caused by δ-Aminolevulinic Acid: Implications for Cancer Reduction

, M.D., Ph.D. & , Ph.D.
Pages 276-286 | Published online: 04 Sep 2002
 

Abstract

δ-Aminolevulinic acid (ALA) is a precursor of haem. The increased concentration of ALA is typically related to acute intermittent porphyria, hereditary tyrosinemia, and lead poisoning. δ-Aminolevulinic acid produced in excess accumulates in a number of organs, causes oxidative damage, and often leads to cancer. Melatonin (N-acetyl-5-methoxytryptamine) is a well-known antioxidant, free radical scavenger, and exhibits anticarcinogenic properties. It protects DNA, lipids, and proteins from oxidative damage. The protective effects of melatonin against ALA-induced oxidation of guanine bases, lipid peroxidation, and alterations in membrane fluidity in several organs have been documented. There is an inverse relationship between melatonin and ALA concentrations in both experimental and clinical conditions of porphyria. The marked efficacy of melatonin in protecting against ALA-related oxidative stress, its oncostatic properties, and low toxicity constitute reasons to consider the use of this indoleamine as a co-treatment in patients suffering from disturbances related to ALA accumulation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,193.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.