270
Views
69
CrossRef citations to date
0
Altmetric
Genetics

The Tuberous Sclerosis Complex Genes in Tumor Development

&
Pages 588-603 | Published online: 24 Sep 2004
 

Abstract

The study of hereditary tumor syndromes has laid a solid foundation toward understanding the genetic basis of cancer. One of the latest examples comes from the study of tuberous sclerosis complex (TSC). As a member of the phakomatoses, TSC is characterized by the appearance of benign tumors, most notably in the central nervous system, kidney, heart, lung, and skin. While classically described as “hamartomas,” the pathology of the lesions has features suggestive of abnormal cellular proliferation, size, differentiation, and migration. Occasionally, tumors progress to become malignant (i.e., renal cell carcinoma). The genetic basis of this disease has been attributed to mutations in one of two unlinked genes, TSC1 and TSC2. Cells undergo bi-allelic inactivation of either gene to give rise to tumors in a classic tumor suppressor “two-hit” paradigm. The functions of the TSC1 and TSC2 gene products, hamartin and tuberin, respectively, have remained ill defined until recently. Genetic, biochemical, and biologic analyses have highlighted their role as negative regulators of the mTOR signaling pathway. Tuberin, serving as a substrate of AKT and AMPK, mediates mTOR activity by coordinating inputs from growth factors and energy availability in the control of cell growth, proliferation, and survival. Emerging evidence also suggests that the TSC1/2 complex may play a role in modulating the activity of β–catenin and TGFβ. These findings provide novel functional links between the TSC genes and other tumor suppressors responsible for Cowden′s disease (PTEN), Peutz-Jeghers syndrome (LKB1), and familial polyposis (APC). Common sporadic cancers such as prostate, lung, colon, endometrium, and breast have ties to these genes, highlighting the potential role of the TSC proteins in human cancers. Rapamycin, a specific mTOR inhibitor, has potent antitumoral activities in preclinical models of TSC and is currently undergoing phase I/II clinical studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,193.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.