60
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Biomass and nitrogen traits of summer pigeon peas and winter wheat grown for three rotations in containers

, &
Pages 897-912 | Published online: 05 Feb 2007
 

Abstract

Pigeon pea [Cajanus cajan (L.) Millsp.] cultivars, ‘Georgia-1’ and ‘ICPL-87’, were grown without inoculation and with Bradyrhizobium inoculation (multistrain, TAL 1127, or TAL 1132) to evaluate legume dry weight (DW) and nitrogen (N) content, soil mineral N, and subsequent wheat (Triticum aestivum L.) productivity. Pigeon peas were grown during summer and ‘TAM 101’ wheat was grown during winter, along with summer fallow controls fertilized with 0, 45, and 90 kg N ha− 1, in 36-cm diam. 20-L pots from 1992 to 1995. Representative pigeon peas were harvested in the fall and remaining plants were incorporated into the soil. Wheat was planted and soil cores were collected at 35 to 48 d after pigeon pea harvest. Wheat was harvested the following spring. Factors affecting DW and N content of both crops included length of growing season, environmental variation, and contribution of residual N. Among pigeon pea cultivars, Georgia-1 occasionally demonstrated higher DW and N content compared with ICPL-87. Estimation of N provided by pigeon pea to the last wheat crop in the third sequence of yearly rotations was 30 kg N ha− 1. Pigeon pea treatments demonstrating highest DW, N content, and contribution to soil N generally produced winter wheat with higher yield and N content compared with other treatments. While yield and N content of winter wheat fertilized at 90 kg N ha− 1 either decreased or stayed the same from 1993 to 1995, these same measurements in wheat following pigeon peas demonstrated a 3- to 4-fold increase over the same time period and warrant further research in field rotation systems of the southern Great Plains.

Acknowledgments

This project was funded by the USDA National Research Initiative Competitive Grants Program (Grant No. 93-37311-9580), Oklahoma Wheat Commission, University of Central Oklahoma (UCO) Office of Sponsored Research and Grants, and the USDA-ARS Grazinglands Research Laboratory. Authors thank members of the UCO Plant Physiology Research Group for assisting with the project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.