282
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Detrimental Effects of Lead Phytotoxicity on Growth, Yield, and Metabolism of Rice

, , &
Pages 255-265 | Published online: 18 Aug 2006
 

Abstract

To elucidate the deleterious effects of excessive lead (Pb) on rice (Oryza sativa) cv. Swarn Mansoori, plants were grown in refined sand in complete nutrient solution for 42 days. On the 43rd day, Pb nitrate was superimposed at 1 mM (to rice) for 104 days (till harvest). A set of plants in complete nutrient solution was maintained as control for the same period. Excess Pb reduced the dry weight pronouncedly at harvest (after 104 days of metal supply) when the grain yield also decreased. Lead accumulation reduced the concentrations of chlorophyll in leaves, carotene, sugars, phenols, nonprotein nitrogen, protein, iron, manganese, copper, zinc, Hill reaction activity, and peroxidase activity (one of the anti-oxidative enzymes), but increased the concentrations of sulphur, phosphorus, magnesium (early stage) protein nitrogen, and activity of catalase, acid phosphatase, and ribonuclease in leaves of rice. Except for slight growth depression and reduction in number and size of leaves, tillers and inflorescence, no other visible symptoms of excessive Pb could be seen before harvesting.

Acknowledgments

The authors are grateful to Indian Council of Agricultural Research for financial help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.