119
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Development of a “Continuous-Flow Adhesion Cell” for the Assessment of Hydrogel Adhesion

, , , , &
Pages 897-904 | Published online: 26 Jul 1999
 

Abstract

The purpose of this study was to develop an in vitro perfusion technique or “continuous-flow adhesion cell” model to predict the in vivo performances of different mucoadhesive drug delivery systems based on hydrogels. Two studies were performed, either using a rabbit small intestine or a polyethylene surface; the adhesion of four gels—two poly(acrylic acid)s (PAAs) (carbomer [CM] and polycarbophil [PC]), an ethyleneoxide-propyleneoxide block copolymer (Poloxamer®407 [PM]), and a polysaccharide (scleroglucane [SG])—were evaluated. In this respect, scleroglucane was used as a control. The adhesiveness of the different gels for both supports is in accordance with that described in the literature, that is, polycarbophil adhered more strongly than carbomer, which itself adhered more strongly than poloxamer. This study proved that the gels adhere more strongly to the polyethylene tube than to the rabbit small intestine, thus indicating that evidence for adhesion properties does not need any presence of mucus. Therefore, our in vitro model could be a good method, more precise and more simple than an ex vivo technique, to predict the bioadhesion of gelified devices.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.