65
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effect of Additives on Stability of Etoposide in PLGA Microspheres

&
Pages 345-350 | Published online: 30 Apr 2001
 

Abstract

The purpose of this article was to determine the shelf life of etoposide in poly(lacticco-glycolic acid) (PLGA) microspheres prepared with and without additives (i.e., tricaprin and isopropyl myristic acid ester [IPM]). The microspheres were prepared by a single-emulsion solvent extraction technique with and without 25% w/w additive. The batches of microspheres were subjected to an accelerated stability study at two elevated temperatures (70°C and 80°C or 80°C and 90°C). Samples were taken at 7, 14, 21, 28, and 35 days for estimation of drug content by high-performance liquid chromatography (HPLC). The drug stability in the microspheres was determined by plotting the log percentage drug remaining versus time to obtain the degradation rate constant k of etoposide at the measured temperature. This degradation rate constant was then used in the Arrhenius equation to obtain the activation energy of etoposide, which was utilized to determine the shelf life of the microspheres at room temperature. The results showed that all three microsphere formulations had good long-term stability at room temperature (6.62-8.86 years at 25°C). The plain microspheres were shown to possess a shelf life of 6.62 years, and the IPM and tricaprin were the most stable with shelf lives of 8.25 and 8.86 years, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.