99
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of Dissolution of Ethopropazine Using Solid Dispersions Prepared with Phospholipid and/or Polyethylene Glycol

, &
Pages 413-418 | Published online: 30 Apr 2001
 

Abstract

The purpose of this study was to improve the dissolution properties of a poorly water soluble and bioavailable drug, ethopropazine HCl (ET), by incorporating the drug in three different types of solid dispersion systems. Solid dispersions of ET were prepared using 1:1 (w/w) ratios of (1) phospholipid (1,2 dimyristoyl-sn-glycerophosphocholine) (DMPC), (2) polyethylene glycol 8000 (PEG8000), and (3) a novel combination of both DMPC and PEG8000. Using the solvent method of preparation, ET and DMPC and/or PEG were dissolved in chloroform, and solvent subsequently was evaporated using nitrogen gas. The resulting solid dispersion(s) was passed through a 60-mesh sieve. Characterization of ET/DMPC solid dispersion was performed by differential scanning calorimetry (DSC) and X-ray diffractometry studies. Dissolution studies conducted in phosphate buffered saline (PBS) (pH 7.4, 37°C ± 0.5°C) using the USP type II (paddle) dissolution apparatus showed significant increases in the dissolution rate of ET with all the solid dispersions in this study. Specifically, within the first 5 min (D5), solid dispersions containing ET/DMPC (1:1) showed an eightfold increase in dissolution; in combination with DMPC and PEG8000 (1:1), there was an approximately sixfold increase; and a fourfold increase was observed with PEG8000 (1:1). Complete dissolution of all solid dispersions occurred within 60 min (D60) of the run. Storage of the ET/DMPC sample for over 4.5 months revealed a decrease in the dissolution rate when compared to freshly prepared sample. Overall, it was concluded that the dissolution rate of ET significantly improved when dispersed in all the selected carrier systems. However, the solid dispersion of ET/DMPC was observed to be superior to the other combinations used.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.