52
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Degradation Study of a Series of Chloromethyl and Diazomethyl Ketone Anti-leukemic Agents

, &
Pages 143-149 | Published online: 04 Aug 2002
 

ABSTRACT

The chemical stability of a novel cysteine chloromethyl ketone derivative (HI-131) with anti-leukemic activity has been investigated in a microemulsion formulation. HI-131 degrades to two major products, most likely by undergoing oxidation and further reaction with another HI-131 molecule to form higher molecular weight oligomers of the original compound. The degradation kinetics of HI-131 have been studied as a function of pH, buffer composition, ionic strength, and temperature. Degradation follows pseudo-first-order kinetics and the temperature effect obeys the Arrhenius equation. The pH–rate profile demonstrates HI-131 is most stable at lower pH values, although there is no significant influence of ionic strength and buffer ions on the degradation rate. The chemical stability of a homologous series of chloromethyl and diazomethyl ketone derivatives of HI-131 has also been investigated in microemulsion. The relationship between the chain length of the derivatives and the stability is presented. Changing the chloro group to a bromo group resulted in an increase in degradation rate. Alterations to the group on the nitrogen were also investigated. The changes to the stability are discussed in terms of their mechanistic implications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.