332
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Effect of Humidity on Aerosolization of Micronized Drugs

, , , &
Pages 959-966 | Published online: 10 Aug 2003
 

Abstract

The variation of aerosolization with humidity for three micronized drugs used in the treatment of asthma was evaluated by using in vitro methods. Micronized samples of disodium cromoglycate (DSCG), salbutamol sulphate, and triamcinolone acetonide (TAA) were stored for 12 hr at 15, 30, 45, 60, and 75% relative humidity (RH). A suitable “reservoir” dry powder inhaler was loaded and tested by using a twin-stage impinger at each specific humidity. The aerosolization efficiency of all three micronized drugs was affected by variations in humidity. The percentage of the delivered dose and the fine particle fraction of the loaded dose (FPFLD) for both DSCG and salbutamol sulphate decreased with increasing humidity; with the largest decrease in FPFLD occurring between 45% and 60% RH for DSCG and 60% to 75% RH for salbutamol sulphate. These observations suggest that the adhesion properties for both DSCG and salbutamol sulphate, which govern the aerosolization efficiency, are predominately influenced by capillary interactions. In contrast, the FPFLD for TAA significantly increased as the humidity increased over the range 15% to 75% RH, suggesting that triboelectric forces predominate particle-particle interactions. These variations in drug particulate behavior highlight the importance of an individual formulation approach when developing dry powder inhalation systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.