35
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Entry Port Selection for Detecting Particle Size Differences in Metered Dose Inhaler Formulations Using Cascade Impaction

, Ph.D., , , , &
Pages 75-82 | Published online: 02 Feb 2004
 

Abstract

Different sized glass entry ports were evaluated for their drug collection efficiency during aerodynamic particle sizing of metered dose inhalers (MDIs) using cascade impaction. A comparison was made between collection efficiency in the entry port, impactor plates, and filter using the 1 L, 2 L, and 20 L glass entry ports and the USP and twin impinger entry ports. Entry port losses were dependent on the size of entry port selected, with 1–2 L ports showing optimal recovery on impactor plates, compared to the USP entry port. The 1 L entry port was further compared with the USP entry port in its ability to discriminate between subtle changes in particle size distribution (PSD) in an investigational hydrofluoroalkane (HFA)‐based MDI formulation. Deliberately induced differences during product manufacture were easily detected using the 1 L entry port with the Andersen cascade impactor. The USP port was unable to distinguish among products with small particle size differences. An alternative entry port such as the 1 L glass entry port used in this study may provide better means of characterizing the PSD during formulation development and stability testing of MDIs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.