219
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Production of Carbopol® 974P and Carbopol® 971P Pellets by Extrusion‐Spheronization: Optimization of the Processing Parameters and Water Content

, , Ph.D., Pharm.D., , &
Pages 481-490 | Published online: 25 May 2004
 

Abstract

Pellets obtained by extrusion‐spheronization represent multiparticulate dosage forms whose interest in intestinal drug delivery can be potentiated and targeted through bioadhesive properties. However, adhesion itself makes the process difficult or even impossible. The problem of tackiness encountered with bioadhesive wet masses was previously eliminated by the use of electrolytes such as CaCl2. This approach is known to reduce the viscosity of polyacrylic acids by disturbing the interactions between carboxylate groups on adjacent polymer molecules, thereby decreasing their bioadhesive properties. The present study aimed at producing pellets containing carbomers without addition of electrolytes in order to maintain their bioadhesive potentiality at its maximum. Carbopol® 974P (10%, 15% and 20%) and Carbopol® 971P (10%) were used in combination with Avicel® PH101. The extrusion speed (30, 45, 60, 90, and 150 rpm), spheronizer speed (350, 700, 960, 1000, and 1300 rpm), spheronization time (5, 10, 15, and 20 minutes) and amount of water (45%, 50%, 54%, and 58%) were optimized in order to obtain the highest yield of spherical pellets ranging 710–1000 µm in diameter. For pellets containing 10%, 15% Carbopol® 974P or 10% Carbopol® 971P and 45% water content, 30 rpm extrusion speed, 960 rpm, and 10 minutes spheronization speed and time led to the highest yields and sphericities, respectively, 72% and 0.91, 67% and 0.78, and 76% and 0.80. Production of pellets with 20% Carbopol® 974P could be achieved through the increase of the water content up to 58% and implementation of 30 rpm extrusion speed, 1300 rpm, and 10 minutes spheronization speed and time. The yield and sphericity were 42% and 0.78 respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.